Skip to main content

Advertisement

Log in

Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Kinetic study of growth of Pseudomonas putida mt-2 was investigated in batch culture under aerobic conditions, on glucose as initial carbon and energy source. Cell growth was continuous and three phases were found regarding accumulation of intermediates: (1) glucose was largely converted to gluconate and 2-ketogluconate, (2) then gluconate was converted to 2-ketogluconate and (3) the latter was consumed after gluconate depletion. Examination of growth kinetics and yields showed that glucose flux was mainly oriented to oxidation reduction in the periplasm and less towards biosynthesis. Values of respiratory quotient and of CO2/biomass and O2/biomass yields were characteristic of each phase. Main enzymatic activities involved in the use of these substrates were always detected meaning that concomitant assimilation is possible. However the levels of these activities varied during growth. Membrane conversions seem to have a significant energetic contribution explaining the higher specific growth rate obtained in glucose phase compared to gluconate and 2-ketogluconate ones. This is also noticeable through the evolution of the yields \( Y_{{\text{O}}_2/{\text{X}}} \) and \( Y_{{\text{CO}}_2 /{\text{X}}} \). Although the three convergent pathways are operational and can be genetically controlled, the progression of the culture in successive phases highlights an overall level of regulation in response to the energetic needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

μ :

Specific growth rate (h−1)

CPR:

CO2 production rate (mmole l−1 h−1)

Gn:

Gluconate

KGn:

2-ketogluconate

net S:

Net assimilated phase substrate not used in membrane oxidations (C-mole)

OUR:

Oxygen uptake rate (mmole l−1 h−1)

\( q_{{\text{CO}}_2 } \) :

Specific CO2 production rate (mmole g−1 h−1)

\( q_{{\text{O}}_2 } \) :

Specific oxygen uptake rate (mmole g−1 h−1)

RQ:

Respiratory quotient (CPR/OUR)

S:

Growth phase substrate (i.e. glucose, gluconate or 2-ketogluconate)

\( Y_{{\text{CO}}_2 /{\text{S}}} \) :

Yield, in percent of C-mole of accumulated CO2 per C-mole of consumed substrate

\( Y_{{\text{CO}}_2 /{\text{X}}} \) :

Molar yield of produced CO2 to formed biomass (mole/mole)

Y Gn/S :

Yield, in percent of C-mole of accumulated gluconate per C-mole of consumed substrate

Y KGn/S :

Yield, in percent of C-mole of accumulated 2-ketogluconate per C-mole of consumed substrate

\( Y_{{\text{O}}_2 /{\text{X}}} \) :

Molar yield of consumed oxygen to formed biomass (mole/mole)

Y X/net S :

Net conversion yield, in percent of C-mole of formed biomass per C-mole of net assimilated phase substrate

Y X/S :

Yield, in percent of C-mole of formed biomass per C-mole of utilized substrate

References

  • Assinder SJ, Williams PA (1990) The TOL plasmids: determinants of the catabolism of toluene and the xylenes. Adv Microb Physiol 31:1–69

    Article  PubMed  CAS  Google Scholar 

  • Basu A, Phale PS (2006) Inducible uptake and metabolism of glucose by the phosphorylative pathway in Pseudomonas putida CSV86. FEMS Microbiol Lett 259:311–316

    Article  PubMed  CAS  Google Scholar 

  • Conway T (1992) The Entner–Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 9:1–27

    PubMed  CAS  Google Scholar 

  • del Castillo T, Duque E, Ramos JL (2008) A set of activators and repressors control peripheral glucose pathways in Pseudomonas putida to yield a common central intermediate. J Bacteriol 190:2331–2339

    Article  PubMed  CAS  Google Scholar 

  • del Castillo T, Ramos JL, Rodriguez-Herva JJ, Fuhrer T, Sauer U, Duque E (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189:5142–5152

    Article  PubMed  CAS  Google Scholar 

  • Dos Santos VA, Heim S, Moore ER, Stratz M, Timmis KN (2004) Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440. Environ Microbiol 6:1264–1286

    Article  PubMed  CAS  Google Scholar 

  • Eisenberg RC, Butters SJ, Quay SC, Friedman SB (1974) Glucose uptake and phosphorylation in Pseudomonas fluorescens. J Bacteriol 120:147–153

    PubMed  CAS  Google Scholar 

  • Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581–1590

    Article  PubMed  CAS  Google Scholar 

  • Greated A, Lambertsen L, Williams PA, Thomas CM (2002) Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ Microbiol 4:856–871

    Article  PubMed  CAS  Google Scholar 

  • Gwose I, Taraz K (1992) [Pyoverdins from Pseudomonas putida]. Z Naturforsch [C] 47:487–502

    CAS  Google Scholar 

  • Hunt JC, Phibbs PV Jr (1983) Regulation of alternate peripheral pathways of glucose catabolism during aerobic and anaerobic growth of Pseudomonas aeruginosa. J Bacteriol 154:793–802

    PubMed  CAS  Google Scholar 

  • Jimenez JI, Minambres B, Garcia JL, Diaz E (2002) Genomic analysis of the aromatic catabolic pathways from Pseudomonas putida KT2440. Environ Microbiol 4:824–841

    Article  PubMed  CAS  Google Scholar 

  • Kim GJ, Lee IY, Choi DK, Yoon SC, Park YH (1996) High cell density cultivation of Pseudomonas putida BM01 using glucose. J Microbiol Biotechnol 6:221–224

    CAS  Google Scholar 

  • Kunz DA, Chapman PJ (1981) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid. J Bacteriol 146:179–191

    PubMed  CAS  Google Scholar 

  • Latour X, Lemanceau P (1997) Métabolisme carboné et énergetique des Pseudomonas ssp fluorescents saprophytes à oxydase positive. Agronomy 17:427–443

    Article  Google Scholar 

  • Lessie T, Neidhardt FC (1967) Adenosine triphosphate-linked control of Pseudomonas aeruginosa glucose-6-phosphate dehydrogenase. J Bacteriol 93:1337–1345

    PubMed  CAS  Google Scholar 

  • Lessie TG, Berka T, Zamanigian S (1979) Pseudomonas cepacia mutants blocked in the direct oxidative pathway of glucose degradation. J Bacteriol 139:323–325

    PubMed  CAS  Google Scholar 

  • Lessie TG, Phibbs PV Jr (1984) Alternative pathways of carbohydrate utilization in Pseudomonads. Annu Rev Microbiol 38:359–388

    Article  PubMed  CAS  Google Scholar 

  • Ley JD (1966) 2-ketogluconic acid reductase. Meth Enzymol 9:196–200

    Article  Google Scholar 

  • Matsushita K, Ameyama M (1982) D-Glucose dehydrogenase from Pseudomonas fluorescens, membrane-bound. Meth Enzymol 89:149–154

    Article  PubMed  CAS  Google Scholar 

  • Matsushita K, Shinagawa E, Adachi O, Ameyama M (1979) Membrane-bound D-gluconate dehydrogenase from Pseudomonas aeruginosa. Purification and structure of cytochrome-binding form. J Biochem (Tokyo) 85:1173–1181

    CAS  Google Scholar 

  • Midgley M, Dawes EA (1973) The regulation of transport of glucose and methyl alpha-glucoside in Pseudomonas aeruginosa. Biochem J 132:141–154

    PubMed  CAS  Google Scholar 

  • Nandadasa HG, Andreesen M, Schlegel HG (1974) The utilization of 2-ketogluconate by Hydrogenomonas eutropha H 16. Arch Microbiol 99:15–23

    Article  PubMed  CAS  Google Scholar 

  • Palleroni NJ (2003) Prokaryote taxonomy of the 20th century and the impact of studies on the genus Pseudomonas: a personal view. Microbiology 149:1–7

    Article  PubMed  CAS  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83:346–356

    Article  PubMed  CAS  Google Scholar 

  • Phibbs PV Jr, Eagon RG (1970) Transport and phosphorylation of glucose, fructose, and mannitol by Pseudomonas aeruginosa. Arch Biochem Biophys 138:470–482

    Article  PubMed  CAS  Google Scholar 

  • Phibbs PV Jr, Feary TW, Blevins WT (1974) Pyruvate carboxylase deficiency in pleiotropic carbohydrate-negative mutant strains of Pseudomonas aeruginosa. J Bacteriol 118:999–1009

    PubMed  CAS  Google Scholar 

  • Ramos JL, Marques S, Timmis KN (1997) Transcriptional control of the pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. Annu Rev Microbiol 51:341–373

    Article  PubMed  CAS  Google Scholar 

  • Read RR, Costerton JW (1987) Purification and characterization of adhesive exopolysaccharides from Pseudomonas putida and Pseudomonas fluorescens. Can J Microbiol 33:1080–1090

    Article  PubMed  CAS  Google Scholar 

  • Roberts BK, Midgley M, Dawes EA (1973) The metabolism of 2-oxogluconate by Pseudomonas aeruginosa. J Gen Microbiol 78:319–329

    PubMed  CAS  Google Scholar 

  • Simons JA, Teixeira de Mattos MJ, Neijssel OM (1991) Aerobic 2-ketogluconate metabolism of Klebsiella pneumoniae NCTC 418 grown in chemostat culture. J Gen Microbiol 137:1479–1483

    PubMed  CAS  Google Scholar 

  • Sun Z, Ramsay JA, Guay M, Ramsay BA (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71:423–431

    Article  PubMed  CAS  Google Scholar 

  • Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781

    Article  PubMed  Google Scholar 

  • Timmis KN, Pieper DH (1999) Bacteria designed for bioremediation. Trends Biotechnol 17:200–204

    Article  PubMed  CAS  Google Scholar 

  • van Schie BJ et al (1985) Energy transduction by electron transfer via a pyrrolo-quinoline quinone-dependent glucose dehydrogenase in Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter calcoaceticus (var. lwoffi). J Bacteriol 163:493–499

    PubMed  Google Scholar 

  • Vicente M, Canovas JL (1973a) Glucolysis in Pseudomonas putida: physiological role of alternative routes from the analysis of defective mutants. J Bacteriol 116:908–914

    PubMed  CAS  Google Scholar 

  • Vicente M, Canovas JL (1973b) Regulation of the glucolytic enzymes in Pseudomonas putida. Arch Mikrobiol 93:53–64

    Article  PubMed  CAS  Google Scholar 

  • Whiting PH, Midgley M, Dawes EA (1976) The role of glucose limitation in the regulation of the transport of glucose, gluconate and 2-oxogluconate, and of glucose metabolism in Pseudomonas aeruginosa. J Gen Microbiol 92:304–310

    PubMed  CAS  Google Scholar 

  • Williams PA, Murray K (1974) Metabolism of benzoate and the methylbenzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J Bacteriol 120:416–423

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Margaret Lemarié and Benoit Basset for their technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ridha Mosrati.

Additional information

Communicated by Stuart Ferguson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Latrach Tlemçani, L., Corroler, D., Barillier, D. et al. Physiological states and energetic adaptation during growth of Pseudomonas putida mt-2 on glucose. Arch Microbiol 190, 141–150 (2008). https://doi.org/10.1007/s00203-008-0380-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0380-8

Keywords

Navigation