Skip to main content
Log in

The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient uptake of orchid plantlets

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Cymbidium hybridum is one of the most popular pot orchids and cut flowers worldwide. However, the long vegetative growth period and the discordant blooming retarded its mass production. The mixotrophic nutritional mode of some chlorophyllous Cymbidium suggested the essential role of mycorrhizal fungi in the growth of adult green orchids. Here 34 root-associated endophytes were obtained from wild and cultivated Cymbidium and eight strains exhibited obvious growth-promoting effects on the C. hybridum plantlets with increasing root number, root diameter or new bud initiation. Among these, three isolates CL01, ZH3A-3 and CY5-1 with distinct cultural traits and colonization patterns showed better growth-promoting effects. Internal transcribed spacer sequence analyses and morphological observation revealed isolate CL01 belonged to Tulasnella-like Rhizoctonia, ZH3A-3, Umbelopsis nana and CY5-1, Scytalidium lignicola. Microscopic study showed isolate CL01 formed typical orchid mycorrhiza and isolate CY5-1 formed pseudo-mycorrhiza with orchid, whereas hyphae of isolate ZH3A-3 aggregated in the host velamen cells at regular intervals and caused the hypertrophied nucleus and aggregated cytoplasm of neighboring host cell. These three isolates significantly enhanced the increased percentage of total fresh weight of plantlets compared with un-inoculated control (83, 99 and 75 %, respectively). In addition, isolate CL01 increased the N, P, Zn, Cu, Fe contents and ZH3A-3 significantly improved K, Ca, Cu, Mn contents of the symbiotic plantlets compared with control. These results suggested that the mass production of C. hybridum and related orchids could be improved by different beneficial fungi from its parents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhziae

DSE:

Dark septate endophytes

ECM:

Ecto-mycorrhiza

ITS:

Internal transcribed spacer

IPFW:

Increased percentage of total fresh weight

MS:

Murashige and Skoog basal medium

MX:

Mixotrophy

OMF:

Orchid mycorrhizal fungi

PDA:

Potato dextrose agar

6-BA:

6-Benzyladenine

NAA:

1-Naphthaleneacetic acid

A.C.:

Activated carbon

References

  • Alexander C, Alexander IJ, Hadley G (1984) Phosphate uptake by Goodyera repens in relation to mycorrhizal infection. New Phytol 97:401–411

    Article  CAS  Google Scholar 

  • Amos RE, Barnett HL (1966) Umbelopsis versiformis, a new genus and species of the imperfects. Mycologia 58:805–808

    Article  Google Scholar 

  • Bagde US, Prasad R, Varma A (2010) Interaction of Mycobiont: Piriformospora indica with medicinal plants and plants of economic importance. Afr J Biotechnol 9(54):9214–9226

    Google Scholar 

  • Bidartondo MI, Burghardt B, Gebauer G, Bruns TD, Read DJ (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc R Soc B 271:1799–1806

    Article  CAS  Google Scholar 

  • Bougoure JJ, Bougoure DS, Cairney JW, Dearnaley JD (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460

    Article  CAS  Google Scholar 

  • Cameron DD, Leake JR, Read DJ (2006) Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytol 171:405–416

    Article  CAS  Google Scholar 

  • Cameron DD, Irene J, Jonathan RL, David JR (2007) Mycorrhizal acquisition of inorganic phosphorus by the green-leaved terrestrial orchid Goodyera repens. Ann Bot 99:831–834

    Article  CAS  Google Scholar 

  • Cameron DD, Johnson I, Read DJ, Leake JR (2008) Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens. New Phytol 180:176–184

    Article  CAS  Google Scholar 

  • Chang DCN, Chou LC (2001) Seed germination of Haemaria discolor var. dawsoniana and the use of mycorrhizae. Symbiosis 30:29–40

    Google Scholar 

  • Chang DCN, Chou LC (2007) Growth responses, enzyme activities, and component changes as influenced by Rhizoctonia Orchid mycorrhiza on Anoectochilus formosanus Hayata. Bot 48:446–451

    Google Scholar 

  • Dearnaley JDW, Martos F, Selosse MA (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) Fungal associations. The Mycota IX, 2nd edn. Springer, Berlin, pp 207–224

    Chapter  Google Scholar 

  • Dijk E, Eck ND (1995) Effects of mycorrhizal fungi on in vitro nitrogen response of some Dutch indigenous orchid species. Can J Bot 73:1203–1211

    Article  Google Scholar 

  • Dong F (2008) Screen several orchid mycorrhizal fungi and preliminary test on the seed germination condition. Dissertation, Beijing Forestry University, China

  • Dong F, Zhao JN, Liu HX (2008) Effects of fungal elicitors on the growth of the tissue culture of Cymbidium goeringii. North Hortic 5:194–196 In Chinese with english abstract

    Google Scholar 

  • Fernando AA, Currah RS (1996) A comparative study of the effects of the root endophytes Leptodontidium orchidicola and Phialocephala fortinii (fungi imperfecti) on the growth of some subalpine plants in culture. Can J Bot 74:1071–1078

    Article  Google Scholar 

  • Gebauer G, Meyer M (2003) 15N and 13C natural abundance of autotrophic and mycoheterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    Article  CAS  Google Scholar 

  • Genre A, Chabaud M, Timmers T, Bonfante P, Barker DG (2005) Arbuscular mycorrhizal fungi elicit a novel intracellular apparatus in Medicago truncatula root epidermal cells before infection. Plant Cell 17:3489–3499

    Article  CAS  Google Scholar 

  • Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S (2011) Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. Am J Bot 98(7):1148–1163

    Article  Google Scholar 

  • Guo SX, Hou XQ (2009) Interaction between a dark septate endophytic isolate from Dendrobium sp. and roots of D. nobile seedlings. J Integr Plant Biol 51(4):374–381

    Article  Google Scholar 

  • Hossain MM, Kant R, Van PT, Winarto B, Zeng SJ, Teixeira DSJA (2013) The application of biotechnology to orchids. Crit Rev Plant Sci 32(2):69–139

    Article  CAS  Google Scholar 

  • Huynh TT, Thomson R, Mclean CB, Lawrie AC (2009) Functional and genetic diversity of myorrhizal fungi from single plants of Caladenia formosa (Orchidaceae). Ann Bot 104(4):757–765

    Article  CAS  Google Scholar 

  • Ihrmark K, Bodeker IT, Cruz-Martinez K, Friberg H, Kubartova A, Schenck J, Strid Y, Stenlid J, Brandstrom-Durling M, Clemmensen KE, Lindahl BD (2012) New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of artificial and natural communities. FEMS Microbiol Ecol 82(3):666–677

    Article  CAS  Google Scholar 

  • Jin H, Wu JR, Chen X, Han SF (2006) Effects of mycorrhizal fungi on the growth and mineral absorption of Cymbidium goeringii. North Hortic 6:90–92

    Google Scholar 

  • Jin H, Kang ZH, Chen H, Han SF (2007) Effects of mycorrhizal fungi on the growth and mineral nutrition absorption of Dendrobium candidum. J Fujian Coll For 27(1):80

    Google Scholar 

  • Jin H, Xu ZX, Chen JH, Han SF, Ge S, Luo YB (2009) Interaction between tissue-cultured seedlings of Dendrobium officinale and mycorrhizal fungus (Epulorhiza sp.) during symbiotic culture. Chin J Plant Ecol 33(3):433–441

    CAS  Google Scholar 

  • Julou T, Burghardt B, Gebauer G, Berveiller G, Damesin C, Selosse MA (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653

    Article  CAS  Google Scholar 

  • Jumpponen A (2001) Dark septate endophytes—are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Kang HJ, Sigler L, Lee J, Gibas CFC, Yun SH, Lee YW (2010) Xylogone ganodermophthora sp. nov., an ascomycetous pathogen causing yellow rot on cultivated mushroom Ganoderma lucidum in Korea. Mycologia 102(5):1167–1184

    Google Scholar 

  • Kim K, Yim W, Trivedi P, Madhaiyan M, Boruah HPD, Islam MR, Lee G, Sa T (2010) Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327(1–2):429–440

    Article  CAS  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Liu HL, Luo YB, Liu H (2010) Studies of mycorrhizal fungi of Chinese orchids and their role in orchid conservation in China—a review. Bot Rev 76:241–262

    Article  Google Scholar 

  • Mandyam K, Jumpponen A (2005) Seeking the elusive function of the root-colonising dark septate endophytic fungi. Stud Mycol 53:173–189

    Article  Google Scholar 

  • McKendrick SL, Leake JR, Taylor DL, Read DJ (2002) Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247

    Article  Google Scholar 

  • Motomura H, Selosse MA, Martos F, Kagawa A, Yukawa T (2010) Mycoheterotrophy evolved from mixotrophic ancestors: evidence in Cymbidium (Orchidaceae). Ann Bot 106:573–581

    Article  Google Scholar 

  • Müller J (2003) Artificial infection by endophytes affects growth and mycorrhizal colonisation of Lolium perenne. Funct Plant Biol 30(4):419–424

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Article  CAS  Google Scholar 

  • Nontachaiyapoom S, Sasirat S, Manoch L (2010) Isolation and identification of Rhizoctonia-like fungi from roots of three orchid genera, Paphiopedilum, Dendrobium, and Cymbidium, collected in Chiang Rai and Chiang Mai provinces of Thailand. Mycorrhiza 20(7):459–471

    Article  Google Scholar 

  • Rasmussen HN (1995) Terrestrial orchids from seed to mycotrophic plant. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rasmussen HN (2002) Recent development in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Rasmussen HN, Rasmussen FN (2009) Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118:334–345

    Article  Google Scholar 

  • Read DJ (1991) Mycorrhizas in ecosystems-Nature’s response to the “Law of the Minimum”. In: Hawksworth DL (ed) Frontiers in mycology. CAB International, pp 101–130

  • Rodrigues A, Mueller UG, Ishak HD, Bacci MJ, Pagnocca FC (2011) Ecology of microfungal communities in gardens of fungus-growing ants (Hymenoptera: Formicidae): a year-long survey of three species of attine ants in Central Texas. FEMS Microbiol Ecol 78(2):244–255

    Article  CAS  Google Scholar 

  • Selosse MA, Roy ML (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14(2):64–70

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Takemoto D, Hardham RA (2004) The cytoskeleton as a regulator and target of biotic interactions in plants. Plant Physiol 136:3864–3876

    Article  CAS  Google Scholar 

  • Tao G (2009) Diversity and ecological distribution of endophytic fungi associated with Bletilla ochracea in Guizhou, China. Dissertation, Huazhong Agricultural University, China

  • Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179

    Article  CAS  Google Scholar 

  • von Arx JA (1982) On Mucoraceae s. str. and other families of the Mucorales. Sydowia 35:10–26

    Google Scholar 

  • Wang MY, Xia RX (2009) Effects of arbuscular mycorrhizal fungi on growth and iron uptake of Poncirus trifoliata under different pH. Acta Microbiol Sinica 49(10):1374–1379

    CAS  Google Scholar 

  • Watanabe T, Watanabe Y, Fukatsu T, Kurane R (2001) Notes on two Umbelopsis species: U. nana and U. vinacea from Japan. Mycoscience 42:235–237

    Article  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl 18:315–322

    Google Scholar 

  • Wu LQ, Guo SX (2008) Interaction between an isolate of dark-septate fungi and its host plant Saussurea involucrata. Mycorrhiza 18:79–85

    Article  CAS  Google Scholar 

  • Wu J, Ma H, LÜ M, Han S, Zhu Y, Jin H, Liang J, Liu L, J Xu (2010) Rhizoctonia fungi enhance the growth of the endangered orchid Cymbidium goeringii. Botany 88:20–29

    Article  CAS  Google Scholar 

  • Wu PH, Huang DD, Chang DCN (2011) Mycorrhizal symbiosis enhances Phalaenopsis orchid’s growth and resistance to Erwinia chrysanthemi. Afr J Biotechnol 10(50):10095–10100

    Google Scholar 

  • Yi QF, Xin FW, Ye XL (2003) Effects of increasing phosphate and potassium fertilizers on the control of Cymbidium anthracnose. J Trop Subtrop Bot 11(2):157–160

    Google Scholar 

  • Zhang J (2012) Research on diversity of endosymbiotic fungi in roots of Cymbidium. Dissertation, Chinese Academy of forestry, China

  • Zhao YJ, Guo SX, Gao WW, Du SY (1999) The symbiosis of three endophytic fungi with Cymbidium sp. and its effects on the mineral nutrition absorption. Acta Hortic Sin 26(2):110–115

    Google Scholar 

  • Zhu XM, Hu XM, Hu H, Li SY, Yan N (2012) Interaction between endophytic fungi and seedlings of two species of Paphiopedilum during symbiotic culture. Chin J Plant Divers Resour 34(2):171–178

    CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by National Natural Science Foundation of China (Grant No. 31170654), Guangdong Province Science and Technology Project (Grant No. 2007A020200004-7), and the Cooperation Project in Industry, Education and Research of Guangdong Province and Ministry of Education of P. R. China (Grant No. 2011B090400239)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Xi Cao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, XL., Yang, JZ., Liu, S. et al. The colonization patterns of different fungi on roots of Cymbidium hybridum plantlets and their respective inoculation effects on growth and nutrient uptake of orchid plantlets. World J Microbiol Biotechnol 30, 1993–2003 (2014). https://doi.org/10.1007/s11274-014-1623-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-014-1623-2

Keywords

Navigation