Skip to main content
Log in

Expression of glycoproteins bearing complex human-like glycans with galactose terminal in Hansenula polymorpha

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glycoproteins derived from Hansenula polymorpha can not be used for therapeutic purposes due to their high-mannose type asparagine-linked (N-linked) glycans, which result in immune reactions and poor pharmacokinetic behaviors in human body. Previously, we reported that the trimannosyl core N-linked glycans (Man3GlcNAc2) intermediate can be generated in endoplasmic reticulum in HpALG3 and HpALG11 double-mutant H. polymorpha. Here, we describe the further modification of the glycosylation pathway in this double-defect strain to express glycoproteins with complex human-like glycans. After eliminating the impact of HpOCH1, three glycosyltransferases were introduced into this triple-mutant strain. When human β-1,2-N-acetylglucosaminyltransferase I (hGnTI) was efficiently targeted in early Golgi, more than 95 % glycans attached to the glycoproteins were added one N-acetylglucosamine (GlcNAc). With subsequently introduction of rat β-1,2-N-acetylglucosaminyltransferase II (rGnTII) and human β-1,4-galactosyltransferase I (hGalTI), several glycoengineered strains can produce glycoproteins bearing glycans with terminal N-acetylglucosamine or galactose. The expression of glycoproteins with glycan Gal2GlcNAc2Man3GlcNAc2 represents a significant step toward the ability to express fully humanized glycoproteins in H. polymorpha. Furthermore, several shake-flask and bioreactor fermentation experiments indicated that, although the cells do display a reduction in growth rate, the glycoengineered strains are still suitable for high-density fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe H, Takaoka Y, Chiba Y, Sato N, Ohgiya S et al (2009) Development of valuable yeast strains using a novel mutagenesis technique for the effective production of therapeutic glycoproteins. Glycobiology 19(4):428–436

    Article  CAS  Google Scholar 

  • Ballou C (1990) Isolation, characterization, and properties of Saccharomyces cerevisiae mnn mutants with nonconditional protein glycosylation defects. Method Enzymol 185:440–470

    Article  CAS  Google Scholar 

  • Bobrowicz P, Davidson RC, Li H, Potgieter TI, Nett JH et al (2004) Engineering of an artificial glycosylation pathway blocked in core oligosaccharide assembly in the yeast Pichia pastoris: production of complex humanized glycoproteins with terminal galactose. Glycobiology 14(9):757–766

    Article  CAS  Google Scholar 

  • Burda P, Aebi M (1999) The dolichol pathway of N-linked glycosylation. Biochim Biophys Acta 1426(2):239–257

    Article  CAS  Google Scholar 

  • Cheng J, Huang S, Yu H, Li Y, Lau K et al (2010) Trans-sialidase activity of Photobacterium damsela α2, 6-sialyltransferase and its application in the synthesis of sialosides. Glycobiology 20(2):260–268

    Article  CAS  Google Scholar 

  • Cheon SA, Kim H, Oh DB, Kwon O, Kang HA (2012) Remodeling of the glycosylation pathway in the methylotrophic yeast Hansenula polymorpha to produce human hybrid-type N-glycans. J Microbiol 50(2):341–348

    Article  CAS  Google Scholar 

  • Chiba Y, Suzuki M, Yoshida S, Yoshida A, Ikenaga H et al (1998) Production of human compatible high mannose-type (Man5GlcNAc2) sugar chains in Saccharomyces cerevisiae. J Biol Chem 273(41):26298–26304

    Article  CAS  Google Scholar 

  • D’Agostaro GA, Zingoni A, Moritz RL, Simpson RJ, Schachter H et al (1995) Molecular cloning and expression of cDNA encoding the rat UDP-N-acetylglucosamine: alpha-6-D-mannoside beta-1, 2-N-acetylglucosaminyltransferase II. J Biol Chem 270(25):15211–15221

    Article  Google Scholar 

  • De Pourcq K, De Schutter K, Callewaert N (2010) Engineering of glycosylation in yeast and other fungi: current state and perspectives. Appl Microbiol Biotechnol 87(5):1617–1631

    Article  Google Scholar 

  • Dean N (1999) Asparagine-linked glycosylation in the yeast Golgi. Biochim Biophys Acta 1426(2):309–322

    Article  CAS  Google Scholar 

  • Freeze HH (2006) Genetic defects in the human glycome. Nat Rev Genet 7(7):537–551

    Article  CAS  Google Scholar 

  • Friedman BA, Vaddi K, Preston C, Mahon E, Cataldo JR et al (1999) A comparison of the pharmacological properties of carbohydrate remodeled recombinant and placental-derived β-glucocerebrosidase: implications for clinical efficacy in treatment of Gaucher disease. Blood 93(9):2807–2816

    CAS  Google Scholar 

  • Gellissen G, Kunze G, Gaillardin C, Cregg JM, Berardi E et al (2005) New yeast expression platforms based on methylotrophic Hansenula polymorpha and Pichia pastoris and on dimorphic Arxula adeninivorans and Yarrowia lipolytica-a comparison. FEMS Yeast Res 5(11):1079–1096

    Article  CAS  Google Scholar 

  • Gemmill TR, Trimble RB (1999) Overview of N- and O-linked oligosaccharide structures found in various yeast species. Biochim Biophys Acta 1426(2):227–237

    Article  CAS  Google Scholar 

  • Hamilton SR, Bobrowicz P, Bobrowicz B, Davidson RC, Li H et al (2003) Production of complex human glycoproteins in yeast. Science 301(5637):1244–1246

    Article  CAS  Google Scholar 

  • Hamilton SR, Davidson RC, Sethuraman N, Nett JH, Jiang Y et al (2006) Humanization of yeast to produce complex terminally sialylated glycoproteins. Science 313(5792):1441–1443

    Article  CAS  Google Scholar 

  • Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369

    Google Scholar 

  • Ishchuk OP, Voronovsky AY, Abbas CA, Sibirny AA (2009) Construction of Hansenula polymorpha strains with improved thermotolerance. Biotechnol Bioeng 104(5):911–919

    Article  CAS  Google Scholar 

  • Kang HA, Sohn JH, Choi ES, Chung BH, Yu MH et al (1998) Glycosylation of human α1-antitrypsin in Saccharomyces cerevisiae and methylotrophic yeasts. Yeast 14(4):371–381

    Article  CAS  Google Scholar 

  • Kiel J, Komduur J, van der Klei I, Veenhuis M (2003) Macropexophagy in Hansenula polymorpha: facts and views. FEBS Lett 549(1–3):1–6

    Google Scholar 

  • Kim MW, Rhee SK, Kim JY, Shimma Y, Chiba Y et al (2004) Characterization of N-linked oligosaccharides assembled on secretory recombinant glucose oxidase and cell wall mannoproteins from the methylotrophic yeast Hansenula polymorpha. Glycobiology 14(3):243–251

    Article  CAS  Google Scholar 

  • Kim MW, Kim EJ, Kim JY, Park JS, Oh DB et al (2006) Functional characterization of the Hansenula polymorpha HOC1, OCH1, and OCR1 genes as members of the yeast OCH1 mannosyltransferase family involved in protein glycosylation. J Biol Chem 281(10):6261–6272

    Article  CAS  Google Scholar 

  • Kunze G, Kang HA, Gellissen G (2009) Hansenula polymorpha (Pichia angusta): biology and applications. In: Satyanaayana T, Kunze G (eds) Yeast biotechnology:diversity and applications. Springer, Berlin, pp 47–64

    Chapter  Google Scholar 

  • Li H, Sethuraman N, Stadheim TA, Zha D, Prinz B et al (2006) Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat Biotechnol 24(2):210–215

    Article  CAS  Google Scholar 

  • Matsumiya S, Yamaguchi Y, Saito J, Nagano M, Sasakawa H et al (2007) Structural comparison of fucosylated and nonfucosylated Fc fragments of human immunoglobulin G1. J Mol Biol 368(3):767–779

    Article  CAS  Google Scholar 

  • Moremen KW, Tiemeyer M, Nairn AV (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Res Mol Cell Biol 13(7):448–462

    Article  CAS  Google Scholar 

  • Nett JH, Stadheim TA, Li H, Bobrowicz P, Hamilton SR et al (2011) A combinatorial genetic library approach to target heterologous glycosylation enzymes to the endoplasmic reticulum or the Golgi apparatus of Pichia pastoris. Yeast 28(3):237–252

    Article  CAS  Google Scholar 

  • Oh DB, Park JS, Kim MW, Cheon SA, Kim EJ et al (2008) Glycoengineering of the methylotrophic yeast Hansenula polymorpha for the production of glycoproteins with trimannosyl core N-glycan by blocking core oligosaccharide assembly. Biotechnol J 3(5):659–668

    Article  CAS  Google Scholar 

  • Qian W, Song H, Liu Y, Zhang C, Niu Z et al (2009) Improved gene disruption method and Cre-loxP mutant system for multiple gene disruptions in Hansenula polymorpha. J Microbiol Methods 79(3):253–259

    Article  CAS  Google Scholar 

  • Sethuraman N, Stadheim TA (2006) Challenges in therapeutic glycoprotein production. Curr Opin Biotechnol 17(4):341–346

    Article  CAS  Google Scholar 

  • Song H, Qian W, Wang H, Qiu B (2010) Identification and functional characterization of the HpALG11 and the HpRFT1 genes involved in N-linked glycosylation in the methylotrophic yeast Hansenula polymorpha. Glycobiology 20(12):1665–1674

    Article  CAS  Google Scholar 

  • Stöckmann C, Maier U, Anderlei T, Knocke C, Gellissen G et al (2003) The oxygen transfer rate as key parameter for the characterization of Hansenula polymorpha screening cultures. J Ind Microbiol Biot 30(10):613–622

    Article  Google Scholar 

  • Stöckmann C, Scheidle M, Dittrich B, Merckelbach A, Hehmann G et al (2009) Process development in Hansenula polymorpha and Arxula adeninivorans, a re-assessment. Microb Cell Fact. doi:10.1186/1475-2859-8-22

    Google Scholar 

  • Umana P, Jean-Mairet J, Moudry R, Amstutz H, Bailey JE (1999) Engineered glycoforms of an antineuroblastoma IgG1 with optimized antibody-dependent cellular cytotoxic activity. Nat Biotechnol 17(2):176–180

    Article  CAS  Google Scholar 

  • Verostek MF, Lubowski C, Trimble RB (2000) Selective organic precipitation/extraction of released N-glycans following large-scale enzymatic deglycosylation of glycoproteins. Anal Biochem 278(2):111–122

    Article  CAS  Google Scholar 

  • Vervecken W, Kaigorodov V, Callewaert N, Geysens S, De Vusser K et al (2004) In vivo synthesis of mammalian-like, hybrid-type N-glycans in Pichia pastoris. Appl Environ Microbiol 70(5):2639–2646

    Article  CAS  Google Scholar 

  • Werten MWT, van den Bosch TJ, Wind RD, Mooibroek H, de Wolf FA (1999) High-yield secretion of recombinant gelatins by Pichia pastoris. Yeast 15(11):1087–1096

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the MALDI-TOF assistance provided by Dr. Yuan-ming Luo (Institute of Microbiology, Chinese Academy of Sciences, Beijing, China).

Conflict of interest

The authors report no potential conflicts of interest in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing-sheng Qiu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Song, Hl., Wang, Q. et al. Expression of glycoproteins bearing complex human-like glycans with galactose terminal in Hansenula polymorpha . World J Microbiol Biotechnol 29, 447–458 (2013). https://doi.org/10.1007/s11274-012-1197-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-012-1197-9

Keywords

Navigation