Skip to main content
Log in

Isolation and characterization of a thermostable cellulase-producing Fusarium chlamydosporum

  • Original Paper
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A thermostable cellulase-producing fungus, HML 0278, was identified as Fusarium chlamydosporum by morphological characteristics and ITS rDNA sequence analysis. HML 0278 produced extracellular cellulases in solid-state fermentation using sugar cane bassage as the carbon source. Native-PAGE analysis demonstrated that this fungus strain was capable of producing the three major components of cellulases and xylanase, with a yield of 281.8 IU/g for CMCase, 182.4 IU/g for cellobiohydrolase, 135.2 IU/g for β-glucosidase, 95.2 IU/g for filter paper activity, and 4,720 IU/g for xylanase. More importantly, the CMCase and β-glucosidase produced by HML 0278 showed stable enzymatic activities within pH 4–9 and pH 4–10, and at temperatures below 70 and 60°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alani F, Anderson WA, Moo-Young M (2008) New isolate of Streptomyces sp. with novel thermoalkalotolerant cellulases. Biotechnol Lett 30:123–126

    Article  CAS  Google Scholar 

  • Bailey MJ, Biely P, Poutanen K (1992) Interlaboratory testing of methods for assay of xylanase activity. J Biotechnol 23:257–270

    Article  CAS  Google Scholar 

  • Bayer EA, Chanzy H, Lamed R, Shoham Y (1998) Cellulose, cellulases and cellulosomes. Curr Opin Struct Biol 8(5):548–557

    Article  CAS  Google Scholar 

  • Beg QK, Kapoor M, Mahajan L, Hoondal GS (2001) Microbial xylanases and their industrial applications: a review. Appl Microbiol Biotechnol 56:326–338

    Article  CAS  Google Scholar 

  • Bhat MK (2000) Cellulases and related enzymes in biotechnology. Biotechnol Adv 18:355–383

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Bruns TD, White TJ, Taylor JW (1991) Fungal molecular systematics. Annu Rev Ecol Syst 22:525–564

    Article  Google Scholar 

  • Christakopoulos P, Macris BJ, Kekos D (1989) Direct fermentation of cellulose to ethanol by Fusarium oxysporum. Enzyme Microb Tech 11:236–239

    Article  CAS  Google Scholar 

  • Christakopoulos P, Kekos D, Macris BJ, Claeyssens M, Bhat MK (1995) Purification and characterization of a less randomly acting endo-1, 4-beta-d-glucanase from the culture filtrates of Fusarium oxysporum. Arch Biochem Biophys 316(1):428–433

    Article  CAS  Google Scholar 

  • Christakopoulos P, Kekos D, Macris BJ, Claeyssens M, Bhat MK (1996) Purification and characterisation of a major xylanase with cellulase and transferase activities from Fusarium oxysporum. Carbohydr Res 289:91–104

    Article  CAS  Google Scholar 

  • Collins T, Gerday C, Feller G (2005) Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol Rev 29:3–23

    Article  CAS  Google Scholar 

  • Dai FL (1987) Morphology and classification of fungi, 1st edn. Scientific & Technological Press, Beijing, pp 297–314

    Google Scholar 

  • Demain AL, Newcomb M, Wu JHD (2005) Cellulase, clostridia, and ethanol. Microbiol Mol Biol Rev 69:124–154

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  Google Scholar 

  • Ghose TK (1987) Measurement of cellulose activities. Pure Appl Chem 59:257–260

    Article  CAS  Google Scholar 

  • Gómez-Gómez E, Isabel M, Roncero G, Di Pietro A, Hera C (2001) Molecular characterization of a novel endo-beta-1, 4-xylanase gene from the vascular wilt fungus Fusarium oxysporum. Curr Genet 40:268–275

    Article  Google Scholar 

  • Kumar PKR, Singh A, Schuegerl K (1991) Fed-batch culture for the direct conversion of cellulosic substrates to acetic acid/ethanol by Fusarium oxysporum. Process Biochem 26:209–216

    Article  CAS  Google Scholar 

  • Kwon KS, Lee J, Kang HG, Hah YC (1994) Detection of beta-glucosidase activity in polyacrylamide gels with esculin as substrate. Appl Environ Microbiol 60:4584–4586

    CAS  Google Scholar 

  • Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66:506–577

    Article  CAS  Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  Google Scholar 

  • Mandels M, Andreotti RE, Roche C (1976) Measurement of saccharifying cellulose. Biotechnol Bioeng Symp 6:21–33

    CAS  Google Scholar 

  • Matsumoto K, Endo Y, Tamiya N, Kano M, Miyauchi K (1974) Studies on cellulase produced by the phytopathogens. Purification and enzymatic properties of cellulase of Fusarium moniliforme. J Biochem 76:563–572

    CAS  Google Scholar 

  • Matthew TH, David AM, Tony H (2000) Approach to designing rotating drum bioreactors for solid-state fermentation on the basis of dimensionless design factors. Biotechnol Bioeng 67(3):274–282

    Article  Google Scholar 

  • Michaelon LV, Lazarus CM, Griffiths G, Napier JA, Stobart AK (1998) Isolation of a delta5-fatty acid desaturase gene from Mortierella alpina. J Biol Chem 273:19055–19059

    Article  Google Scholar 

  • Muniswaran A, Charyulu N (1994) Solid substrate fermentation of coconut coir pith for cellulase production. Enzyme Microb Technol 16:436–440

    Article  CAS  Google Scholar 

  • Reinhold-Hurek B, Hurek T, Claeyssens M, Van MM (1993) Cloning, expression in Escherichia coli and characterization of cellulolytic enzymes of Azoarcus sp., a root-invading diazotroph. J Bacteriol 175:7056–7065

    CAS  Google Scholar 

  • Sugimura M, Watanabe H, Lo N, Saito H (2003) Purification, characterization, cDNA cloning and nucleotide sequencing of a cellulase from the yellow-spotted longicorn beetle, Psacothea hilaris. Eur J Biochem 270:3455–3460

    Article  CAS  Google Scholar 

  • Teeri TT (1997) Crystalline cellulose degradation: new insight into the function of cellobiohydrolase. Trends Biotechnol 15:160–167

    Article  Google Scholar 

  • Wei JC (1979) Fungi identification guide, 1st edn. Shanghai Science & Technology Press, Shanghai, pp 405–614

    Google Scholar 

  • Wood TM (1969) The cellulase of Fusarium solani. Resolution of the enzyme complex. Biochem J 115(3):457–464

    CAS  Google Scholar 

  • Zhang YH, Lynd LR (2004) Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulase systems. Biotechnol Bioeng 88:797–824

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (20066001), Guangxi Natural Science Foundation (2010GXNSFA013103), and by the Open Fund of Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization (SB0607).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Liang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, Y., He, H., Li, N. et al. Isolation and characterization of a thermostable cellulase-producing Fusarium chlamydosporum . World J Microbiol Biotechnol 26, 1991–1997 (2010). https://doi.org/10.1007/s11274-010-0383-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11274-010-0383-x

Keywords

Navigation