Skip to main content
Log in

Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Overexpression of the gene encoding the poly-3-hydroxy-n-phenylalkanoate (PHPhA) depolymerase (phaZ) in Pseudomonas putida U avoids the accumulation of these polymers as storage granules. In this recombinant strain, the 3-OH-acyl-CoA derivatives released from the different aliphatic or aromatic poly-3-hydroxyalkanoates (PHAs) are catabolized through the β-oxidation pathway and transformed into general metabolites (acetyl-CoA, succinyl-CoA, phenylacetyl-CoA) or into non-metabolizable end-products (cinnamoyl-CoA). Taking into account the biochemical, pharmaceutical and industrial interest of some PHA catabolites (i.e., 3-OH-PhAs), we designed a genetically engineered strain of P. putida U (P. putida U ΔfadBA-phaZ) that efficiently bioconverts (more than 80%) different n-phenylalkanoic acids into their 3-hydroxyderivatives and excretes these compounds into the culture broth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abraham GA, Gallardo A, San Román J, Olivera ER, Jodrá R, García B, Miñambres B, García JL, Luengo JM (2001) Microbial síntesis of poly(β-hydroxyalkanoates) bearing phenylgroups from Pseudomonas putida: chemical structure and characterization. Biomacromolecules 2:562–567

    Article  CAS  PubMed  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    Google Scholar 

  • Burke T, Chandrasekhar B, Knight M (1999) Analogs of viscosin and uses thereof. Peptide Technologies Corp., Washington, D.C.

    Google Scholar 

  • Cardoso CR, Brito FCF de, Silva KCM da, Miranda ALP de, Fraga CAM, Barreiro EJ (2002) Design, síntesis and pharmacological evaluation of novel pyrazolo[3,4-b]thieno[2,3-d]pyridine acid derivatives: a new class of anti-inflammatory and anti-platelet agents. Bioorg Med Chem Lett 12:9–12

    Article  CAS  PubMed  Google Scholar 

  • De Boer J, Backer JH (1967) Diazomethane. Org Synth Coll 4:250–253

    Google Scholar 

  • De Roo G, Kellerhals MB, Ren Q, Witholt B, Kessler B (2002) Production of chiral R-3-hydroxyalkanoic acids and R-3-hydroxyalkanoic acid methylesters via hydrolytic degradation of polyhydroxyalkanoate synthesized by pseudomonads. Biotechnol Bioeng 77:717–722

    Article  PubMed  Google Scholar 

  • Dieuleveux V, Pyl D van der, Chataud J, Gueguen M (1998) Purification and characterization of anti-Listeria compounds produced by Geotrichum candidum. Appl Environ Microbiol 64:800–803

    CAS  PubMed  Google Scholar 

  • Fiedler S, Steinbüchel A, Rehm BHA (2002) The role of the fatty acid β-oxidation multienzyme complex from Pseudomonas oleovorans in polyhydroxyalkanoates biosynthesis: molecular characterization of the fadBA operon from P. oleovorans and of the enoyl-CoA hydratase genes PhaJ from P. oleovorans and Pseudomonas putida. Arch Microbiol 178:149–160

    Article  CAS  PubMed  Google Scholar 

  • Floriano B, Ruiz Barba JL, Jiménez-Díaz R (1998) Purification and genetic characterization of enterocin I from Enterococcus faecium 6T1a, a novel antilisterial plasmid-encoded bacteriocin which does not belong to the pediocin family of bacteriocins. Appl Environ Microbiol 64:4883–4890

    CAS  PubMed  Google Scholar 

  • Fritzsche K, Lentz RW, Fuller RC (1990) An unusual bacterial polyester with a phenyl pendant group. Makromol Chem 191:1957–1965

    Article  CAS  Google Scholar 

  • Fukui T, Shiomi N, Doi Y (1998) Expression and characterization of (R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoates biosynthesis by Aeromonas caviae. J Bacteriol 180:667–673

    CAS  PubMed  Google Scholar 

  • García B (2004) Biosíntesis of polihidroxialcanoatos en Pseudomonas putida U: caracterización genética y bioquímica del sistema responsable de su acúmulo y movilización. PhD thesis, Universidad de León, León

  • García B, Olivera ER, Miñambres B, Fernández-Valverde M, Cañedo LM, Prieto MA, García JL, Martínez M, Luengo JM (1999) Novel biodegradable aromatic plastics from a bacterial source. J Biol Chem 274:29228–29241

    Article  PubMed  Google Scholar 

  • Herrero M, Lorenzo V de, Timmis KN (1990) Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 172:6557–6567

    CAS  PubMed  Google Scholar 

  • Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432

    Article  CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Lageveen RG, Huisman GW, Preusting H, Ketelaar P, Eggink G, Witholt B (1988) Formation of polyesters by Pseudomonas oleovorans. Effect of substrates on formation and composition of poly-(R)-3-hydroxyalkanoates and poly-(R)-3-hydroxyalkenoates. Appl Environ Microbiol 54:2924–2932

    CAS  Google Scholar 

  • Luengo JM, García JL, Olivera ER (2001) The phenylacetyl-CoA catabolón: a complex catabolic unit with broad biotechnological applications. Mol Microbiol 39:1434–1442

    Article  CAS  PubMed  Google Scholar 

  • Luengo JM, García B, Sandoval A, Naharro G, Olivera E (2003) Bioplastics from microorganisms. Curr Opin Microbiol 6:251–260

    Article  CAS  PubMed  Google Scholar 

  • Madison LL, Huisman GW (1999) Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53

    Google Scholar 

  • Martínez-Blanco H, Reglero A, Rodríguez-Aparicio LB, Luengo JM (1990) Purification and biochemical characterization of phenylacetyl-CoA ligase from Pseudomonas putida U. A specific enzyme for the catabolism of phenylacetic acid. J Biol Chem 265:7084–7090

    PubMed  Google Scholar 

  • Miñambres B, Olivera ER, García B, Naharro G, Luengo JM (2000) From a short sequence to the complete genome. Biochem Biophys Res Commun 272:477–479

    Article  PubMed  Google Scholar 

  • Moore JA, Reed DE (1973) Diazomethane. Org Synth Coll 5:351–355

    Google Scholar 

  • Olivera ER, Miñambres B, García B, Muñiz C, Moreno MA, Ferrández A, Díaz E, García JL, Luengo JM (1998) Molecular characterization of the phenylacetic acid catabolic pathway in Pseudomonas putida U: the phenylacetyl-CoA catabolón. Proc Natl Acad Sci USA 95:6419–6424

    Article  CAS  PubMed  Google Scholar 

  • Olivera ER, Carnicero D, Jodrá R, Miñambres B, García B, Abraham GA, Gallardo A, San Román J, García JL, Luengo JM (2001a) Genetically engineered Pseudomonas: a factory of new bioplastics with broad applications. Environ Microbiol 3:612–618

    Article  CAS  PubMed  Google Scholar 

  • Olivera ER, Carnicero B, García B, Miñambres B, Moreno MA, Cañedo L, DiRusso CC, Naharro G, Luengo JM (2001b) Two different pathways are involved in the β-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications. Mol Microbiol 39:863–874

    Article  CAS  PubMed  Google Scholar 

  • Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 51:553–563

    Article  CAS  PubMed  Google Scholar 

  • Redemann CE, Rice FO, Roberts R, Ward HP (1967) Diazomethane. Org Synth Coll 3:244–248

    Google Scholar 

  • Rehm BHA (2003) Polyesters synthases: natural catalysts for plastics. Biochem J 376:15–33

    Article  CAS  PubMed  Google Scholar 

  • Rehm BHA, Krüger N, Steinbüchel A (1998) A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. J Biol Chem 273:24044–24051

    Article  CAS  PubMed  Google Scholar 

  • Steinbüchel A (2001) Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoates biosynthesis pathway as a successful example. Macromol Biosci 1:1–24

    Article  Google Scholar 

  • Sudesh K, Gan Z, Matsumoto K, Doi Y (2002) Direct observation of polyhydroxyalkanoate chains by atomic force microscopy. Ultramicroscopy 91:157–164

    Article  CAS  PubMed  Google Scholar 

  • Tsuge T, Fukui T, Matsusaki H, Taguchi S, Kobayashi G, Ishizaki A, Doi Y (1999) Molecular cloning of two (R)-specific enoyl-CoA hydratases genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoates synthesis. FEMS Microbiol Lett 184:193–198

    Article  Google Scholar 

  • Tsuge T, Taguchi K, Taguchi S, Doi Y (2003) Molecular characterization and properties of (R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools for synthesis of polyhydroxyalkanoates via fatty acid β-oxidation. Biol Macromol 31:195–205

    Article  CAS  Google Scholar 

  • Vaysse L, Ly A, Moulin G, Dubreucq E (2002) Chain-length selectivity of various lipases during hydrolysis, esterification and alcoholysis in biphasic aqueous medium. Enzyme Microb Technol 31:648–655

    Article  CAS  Google Scholar 

  • Witholt B, Kessler B (1999) Perspectives of medium chain length poly(hydroxyalkanoates), a versatile set of bacterial bioplastics. Curr Opin Biotechnol 10:279–285

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This investigation was supported by the Comisión Interministerial de Ciencia y Tecnología (CICYT), Madrid, Spain (grant BIO2003-05309-C04-01). A.S. and E.A. are recipients of fellowships from the Universidad de León and CICYT, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José M. Luengo.

Appendix

Appendix

NMR data for 3-hydroxy-5-phenylpentanoic acid

1H NMR (CDCl3): δ=1.74 (m; 2H, H-4) 2.45 (m; 2H, H-2), 2.74 (m; 2H, H-5), 4.05 (s, broad; 1H, H-3), 7.17–7.27 (m; 5H, aromatic H). 13C NMR (CDCl3): δ=32.09 (C-5), 37.56 (C-4), 41.27 (C-2), 67.38(C-3), 125.60 (C-4′), 128.31(C-2′, C-6′), 128.21 (C-3′, C-5′), 141.55 (C-1′), 175.97 (C-1).

NMR data for 3-hydroxy-6-phenylhexanoic acid

1H NMR (CDCl3): δ=1.55 (m; 2H, H-4), 1.68–1.81 (m; 2H, H-5), 2.54 (m; 2H, H-2), 2.66 (m; 2H, H-6), 4.08 (s, broad; 1H, H-3), 7.30–7.20 (m; 5H, aromatic H). 13C NMR (CDCl3): δ=27.50 (C-5), 35.86 (C-6), 36.12 (C-4), 41.41 (C-2), 68.20 (C-3), 126.10 (C-4′), 128.67 (C-2′, C-6′), 128.62 (C-3′, C-5′), 142.32 (C-1′), 178.39 (C-1).

NMR data for 3-hydroxy-7-phenylheptanoic acid

1H NMR (CDCl3): δ=1.39–1.49 (m, 2H, H-5), 1.53 (m; 2H, H-4), 1.65 (m, 2H, H-6), 2.47 (m; 2H, H-2), 2.62 (m; 2H, H-7), 4.05 (s, broad; 1H, H-3), 7.17–7.27 (m; 5H, aromatic H). 13C NMR (CDCl3): δ=25.10 (C-5), 31.30 (C-6), 35.79 (C-7), 36.28 (C-4), 41.18 (C-2), 68.04(C-3), 125.66 (C-4′), 128.36 (C-2′, C-6′), 128.26 (C-3′, C-5′), 142.45 (C-1′), 176.04 (C-1).

NMR data for 3-hydroxy-8-phenyloctanoic acid

1H NMR (CDCl3): δ=1.36 (m; 2H, H-6), 1.37–1.47 (m; 2H, H-5), 1.47–1.53 (m; 2H, H-4), 1.63 (m; 2H, H-7), 2.51 (m; 2H, H-2), 2.63 (m; 2H, H-8), 4.03 (s, broad; 1H, H-3), 7.18–7.28 (m; 5H, aromatic H). 13C NMR (CDCl3): δ=25.29 (C-5), 29.07 (C-6), 31.35 (C-7), 35.83 (C-8), 36.30 (C-4), 41.09 (C-2), 68.02 (C-3), 125.63 (C-4′), 128.39 (C-2′, C-6′), 128.25 (C-3′, C-5′), 142.62 (C-1′), 178.06 (C-1).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sandoval, Á., Arias-Barrau, E., Bermejo, F. et al. Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida. Appl Microbiol Biotechnol 67, 97–105 (2005). https://doi.org/10.1007/s00253-004-1752-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-004-1752-x

Keywords

Navigation