Skip to main content
Log in

Adsorption Behavior and Mechanism of Oxytetracycline on Rice Husk Ash: Kinetics, Equilibrium, and Thermodynamics of the Process

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The main objective of the present study is to determine the kinetics, thermodynamics, and adsorption mechanism of the oxytetracycline (OTC) on rice husk ash (RHA). The adsorbent was characterized by scanning electronic microscopy, Fourier transform infrared spectroscopy, and nitrogen physisorption. Batch studies were carried out to evaluate the influence of the adsorbent dose, initial concentration, contact time, temperature, and initial pH. RHA was characterized as having heterogeneous, fibrous, and porous particles, consisting predominantly of silica. The removal of OTC depends on the pH of the medium, which is favored at acid pH values. The kinetic data followed the Bangham model, which indicated an OTC diffusion in the pores of RHA, although this was not the only process, as demonstrated through the use of the Weber-Morris model (IPD model). The Sips isotherm best represents the experimental results of the equilibrium study. It was found that the adsorption process was spontaneous and endothermic. The highest adsorption capacity was found at a pH in the range of 4–6, when the OTC is in its zwitterion form and the surface of the RHA is positively charged, thus permitting electrostatic interactions and the formation of hydrogen bonds between the adsorbent and adsorbate molecules. These findings demonstrate the potential of rice husk ash to remove oxytetracycline from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Acevedo, B., Barriocanal, C., Lupul, I., & Gryglewicz, G. (2015). Properties and performance of mesoporous activated carbons from scrap tyres, bituminous wastes and coal. Fuel, 151, 83–90. https://doi.org/10.1016/j.fuel.2015.01.010.

    Article  CAS  Google Scholar 

  • Ahmaruzzaman, M., & Gupta, V. K. (2011). Rice husk and its ash as low-cost adsorbents in water and wastewater treatment. Industrial & Engineering Chemistry Research, 50(24), 13589–13613. https://doi.org/10.1021/ie201477c.

    Article  CAS  Google Scholar 

  • Ahmed, M. J. (2017). Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons: Review. Environmental Toxicology and Pharmacology, 50, 1–10. https://doi.org/10.1016/j.etap.2017.01.004.

    Article  CAS  Google Scholar 

  • Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2015). Adsorptive removal of antibiotics from water and wastewater: Progress and challenges. Science of The Total Environment, 532(supplement C), 112–126. https://doi.org/10.1016/j.scitotenv.2015.05.130.

    Article  CAS  Google Scholar 

  • Aljeboree, A. M., Alshirifi, A. N., & Alkaim, A. F. (2017). Kinetics and equilibrium study for the adsorption of textile dyes on coconut shell activated carbon. Arabian Journal of Chemistry, 10, S3381–S3393. https://doi.org/10.1016/j.arabjc.2014.01.020.

    Article  CAS  Google Scholar 

  • Álvarez-Torrellas, S., Rodríguez, A., Ovejero, G., & García, J. (2016). Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials. Chemical Engineering Journal, 283(supplement C), 936–947. https://doi.org/10.1016/j.cej.2015.08.023.

    Article  CAS  Google Scholar 

  • Bhowmick, A. C., Rahaman, M. A., Islam, M., Akther, N., Hossain, M. S., & Patwary, M. M. (2015). Comparative adsorption study on rice husk and rice husk ash by using amaranthus gangeticus pigments as dye. European Scientific Journal, ESJ, 11(21).

  • Brunauer, S., Deming, L. S., Deming, W. E., & Teller, E. (1940). On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 62(7), 1723–1732. https://doi.org/10.1021/ja01864a025.

    Article  CAS  Google Scholar 

  • Cheng, D.-H., Yang, S.-K., Zhao, Y., & Chen, J. (2013). Adsorption behaviors of Oxytetracycline onto sediment in the Weihe River, Shaanxi, China. Journal of Chemistry, 2013.

  • Cristiano, E., Hu, Y.-J., Siegfried, M., Kaplan, D., & Nitsche, H. (2011). A comparison of point of zero charge measurement methodology. Clays and Clay Minerals, 59(2), 107–115. https://doi.org/10.1346/CCMN.2011.0590201.

    Article  CAS  Google Scholar 

  • Foo, K. Y., & Hameed, B. H. (2009). Utilization of rice husk ash as novel adsorbent: A judicious recycling of the colloidal agricultural waste. Advances in Colloid and Interface Science, 152(1–2), 39–47. https://doi.org/10.1016/j.cis.2009.09.005.

    Article  CAS  Google Scholar 

  • Hadipramana, J., Riza, F. V., Rahman, I. A., Loon, L. Y., Adnan, S. H., & Zaidi, A. M. A. (2016). Pozzolanic characterization of waste Rice husk ash (RHA) from Muar, Malaysia. IOP Conference Series: Materials Science and Engineering, 160(1), 012066.

    Article  Google Scholar 

  • Halling-Sørensen, B., Sengeløv, G., & Tjørnelund, J. (2002). Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline-resistant bacteria. [journal article]. Archives of Environmental Contamination and Toxicology, 42(3), 263–271. https://doi.org/10.1007/s00244-001-0017-2.

    Article  CAS  Google Scholar 

  • Jaerger, S., dos Santos, A., Fernandes, A. N., & Almeida, C. A. P. (2015). Removal of p-Nitrophenol from aqueous solution using Brazilian peat: Kinetic and thermodynamic studies. Water, Air, & Soil Pollution, 226(8), 236. https://doi.org/10.1007/s11270-015-2500-9.

    Article  CAS  Google Scholar 

  • Jones, A. D., Bruland, G. L., Agrawal, S. G., & Vasudevan, D. (2005). Factors influencing the sorption of oxytetracycline to soils. Environmental Toxicology and Chemistry, 24(4), 761–770. https://doi.org/10.1897/04-037R.1.

    Article  CAS  Google Scholar 

  • Kong, W., Li, C., Dolhi, J. M., Li, S., He, J., & Qiao, M. (2012). Characteristics of oxytetracycline sorption and potential bioavailability in soils with various physical-chemical properties. Chemosphere, 87(5), 542–548. https://doi.org/10.1016/j.chemosphere.2011.12.062.

    Article  CAS  Google Scholar 

  • Lakshmi, U. R., Srivastava, V. C., Mall, I. D., & Lataye, D. H. (2009). Rice husk ash as an effective adsorbent: Evaluation of adsorptive characteristics for indigo carmine dye. Journal of Environmental Management, 90(2), 710–720. https://doi.org/10.1016/j.jenvman.2008.01.002.

    Article  CAS  Google Scholar 

  • Leal, J. F. (2017). Fotodegradação de contaminantes como meio de remediação de águas de aquacultura. Aveiro: Universidade de Aveiro.

    Google Scholar 

  • Li, R., Jia, Y., Wu, J., & Zhen, Q. (2015). Photocatalytic degradation and pathway of oxytetracycline in aqueous solution by Fe 2 O 3–TiO 2 nanopowder. RSC Advances, 5(51), 40764–40771.

    Article  CAS  Google Scholar 

  • Malakootian, M., Bahraini, S., & Zarrabi, M. (2016). Removal of tetracycline antibiotic from aqueous solutions using modified pumice with magnesium chloride. Jentashapir Journal Of Health Research, e37583.

  • McKay, G., Otterburn, M. S., & Sweeney, A. G. (1980). The removal of colour from effluent using various adsorbents—III. Silica: Rate processes. Water Research, 14(1), 15–20. https://doi.org/10.1016/0043-1354(80)90037-8.

    Article  CAS  Google Scholar 

  • Mihciokur, H., & Oguz, M. (2016). Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge. Environmental Toxicology and Pharmacology, 46(supplement C), 174–182. https://doi.org/10.1016/j.etap.2016.07.017.

    Article  CAS  Google Scholar 

  • Monteros, A., Sumba, E., & Salvador, S. (2014). Productividad agrícola en el Ecuador. Quito: MAGAP.

    Google Scholar 

  • Park, B.-D., Wi, S. G., Lee, K. H., Singh, A. P., Yoon, T.-H., & Kim, Y. S. (2003). Characterization of anatomical features and silica distribution in rice husk using microscopic and micro-analytical techniques. Biomass and Bioenergy, 25(3), 319–327. https://doi.org/10.1016/S0961-9534(03)00014-X.

    Article  CAS  Google Scholar 

  • Ratasuk, N., Boonsaner, M., & Hawker, D. W. (2012). Effect of temperature, pH and illumination on abiotic degradation of oxytetracycline in sterilized swine manure. Journal of Environmental Science and Health, Part A, 47(11), 1687–1694.

    Article  CAS  Google Scholar 

  • Rodríguez-Díaz, J. M., García, J. O. P., Sánchez, L. R. B., da Silva, M. G. C., da Silva, V. L., Arteaga-Pérez, L. E. (2015). Comprehensive characterization of sugarcane bagasse ash for its use as an adsorbent. BioEnergy Research, 8(4), 1885–1895.

  • Santaeufemia, S., Torres, E., Mera, R., & Abalde, J. (2016). Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. Journal of Hazardous Materials, 320, 315–325. https://doi.org/10.1016/j.jhazmat.2016.08.042.

    Article  CAS  Google Scholar 

  • Song, Y., Sackey, E. A., Wang, H., & Wang, H. (2019). Adsorption of oxytetracycline on kaolinite. PLoS One, 14(11), e0225335. https://doi.org/10.1371/journal.pone.0225335.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Mall, I. D., & Mishra, I. M. (2006a). Characterization of mesoporous rice husk ash (RHA) and adsorption kinetics of metal ions from aqueous solution onto RHA. Journal of Hazardous Materials, 134(1), 257–267. https://doi.org/10.1016/j.jhazmat.2005.11.052.

    Article  CAS  Google Scholar 

  • Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B., & Mishra, I. M. (2006b). Adsorptive removal of phenol by bagasse fly ash and activated carbon: Equilibrium, kinetics and thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 272(1–2), 89–104.

    Article  CAS  Google Scholar 

  • Tran, H. N., You, S.-J., & Chao, H.-P. (2016). Thermodynamic parameters of cadmium adsorption onto orange peel calculated from various methods: A comparison study. Journal of Environmental Chemical Engineering, 4(3), 2671–2682. https://doi.org/10.1016/j.jece.2016.05.009.

    Article  CAS  Google Scholar 

  • Tran, H. N., You, S.-J., Hosseini-Bandegharaei, A., & Chao, H.-P. (2017). Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Research, 120, 88–116. https://doi.org/10.1016/j.watres.2017.04.014.

    Article  CAS  Google Scholar 

  • Villar da Gama, B. M., Elisandra do Nascimento, G., Silva Sales, D. C., Rodríguez-Díaz, J. M., Bezerra de Menezes Barbosa, C. M., & Menezes Bezerra Duarte, M. M. (2018). Mono and binary component adsorption of phenol and cadmium using adsorbent derived from peanut shells. Journal of Cleaner Production, 201, 219–228. https://doi.org/10.1016/j.jclepro.2018.07.291.

    Article  CAS  Google Scholar 

  • Wang, D., Xu, H., Yang, S., Wang, W., & Wang, Y. (2018). Adsorption property and mechanism of Oxytetracycline onto willow residues. International Journal of Environmental Research and Public Health, 15(1), 8.

    Article  Google Scholar 

  • Yaneva, Z., Koumanova, B., & Allen, S. (2013). Applicability comparison of different kinetic/diffusion models for 4-nitrophenol sorption on Rhizopus oryzae dead biomass. Bulgarian Chemical Communications, 45(2), 161–168.

    CAS  Google Scholar 

  • Zhang, X., Guo, W., Ngo, H. H., Wen, H., Li, N., & Wu, W. (2016). Performance evaluation of powdered activated carbon for removing 28 types of antibiotics from water. Journal of Environmental Management, 172(supplement C), 193–200. https://doi.org/10.1016/j.jenvman.2016.02.038.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Laboratório de Engenharia e Processos Ambientais (LEPA), Laboratório de Engenharia Ambiental (LEA), Centro de Tecnologías Estratégicas do Nordeste (CETENE), and Laboratory of the Centro de Materiais da Universidade do Porto (CEMUP) for their help in the adsorbent characterization and the Scanning Electron Microscopy and X-ray microanalyses and to the company Espectrocrom, especially to the Engineer Edmundo Regalado by his unconditional support.

Funding

The authors would like to acknowledge the Secretaría de Nacional de Educación Superior, Ciencia y Tecnología del Ecuador (SENESCYT), and Universidad Técnica de Manabí for the financial support granted for this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christhell A. Andrade or Joan Manuel Rodríguez-Díaz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 138 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, C.A., Zambrano-Intriago, L.A., Oliveira, N.S. et al. Adsorption Behavior and Mechanism of Oxytetracycline on Rice Husk Ash: Kinetics, Equilibrium, and Thermodynamics of the Process. Water Air Soil Pollut 231, 103 (2020). https://doi.org/10.1007/s11270-020-04473-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04473-6

Keywords

Navigation