Skip to main content
Log in

Removal of p-Nitrophenol from Aqueous Solution Using Brazilian Peat: Kinetic and Thermodynamic Studies

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Removal of p-nitrophenol (PNP) from aqueous solutions using fibrous peat has been investigated in this study by batch adsorption experiments. Factors that can affect the adsorption process, such as pH, temperature, initial PNP concentration and contact time, have been investigated. Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) measurements have also been obtained in order to study the adsorption mechanism of PNP by peat. The Langmuir and Freundlich equations have been applied to investigate the equilibrium. The data fitted the Langmuir isotherm well, with the maximum adsorption capacity decreasing with temperature from 23.4 to 16.1 mg g−1. In general, the adsorption equilibrium was attained within 100 min. For the kinetics study, the best fit was obtained by the pseudo-second-order model instead of the pseudo-first-order model, both of which applied to the experimental data, whereas the results of intraparticle diffusion show a two-step adsorption process. The activation energy value of 70.31 kJ mol−1, calculated from the Arrhenius equation, indicated a predominantly chemical adsorption, whereas the thermodynamic parameters, obtained by the van’t Hoff equation, were exothermic and spontaneous in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmaruzzaman, M., & Gayatri, S. L. (2010). Batch adsorption of 4-nitrophenol by acid activated jute stick char: equilibrium, kinetic and thermodynamic studies. Chemical Engineering Journal, 158, 173–180.

    Article  CAS  Google Scholar 

  • Almeida, C. A. P., Debacher, N. A., Downs, A. J., Cottet, L., & Mello, C. A. D. (2009). Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. Journal of Colloid Interface Science, 332, 46–53.

    Article  CAS  Google Scholar 

  • Almeida, C. A. P., Santos, A., Jaerger, S., Debacher, N. A., & Hankins, N. P. (2010). Mineral waste from coal mining for removal of astrazon red dye from aqueous solutions. Desalination, 264, 181–187.

    Article  CAS  Google Scholar 

  • Altenor, S., Carene, B., Emmanuel, E., Lambert, J., & Gaspard, S. (2009). Adsorption studies of methylene blue and phenol onto vetiver roots activated carbon prepared by chemical activation. Journal of Hazardous Materials, 165, 1029–1039.

    Article  CAS  Google Scholar 

  • Antunes, M., Esteves, V. I., Guégan, R., Crespo, J. S., Fernandes, A. N., & Giovanela, M. (2012). Removal of diclofenac sodium from aqueous solution by Isabel grape bagasse. Chemical Engineering Journal, 192, 114–121.

    Article  CAS  Google Scholar 

  • Arasteh, R., Masoumi, M., Rashidi, A. M., Moradi, L., Samimi, V., & Mostafavi, S. T. (2010). Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions. Applied Surface Science, 256, 4447–4455.

    Article  CAS  Google Scholar 

  • Bhatnagar, A., Minocha, A. K., & Sillanpaa, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engineering Journal, 48, 181–186.

    Article  CAS  Google Scholar 

  • Brown, P. A., Gill, S. A., & Allen, S. J. (2000). Metal removal from wastewater using peat. Water Research, 34, 3907–3916.

    Article  CAS  Google Scholar 

  • Chang, Y., Lv, X., Zha, F., & Lei, Z. (2009). Sorption of p-nitrophenol by anion-cation modified palygorskite. Journal of Hazardous Materials, 168, 826–831.

    Article  CAS  Google Scholar 

  • Chowdhury, S., Chakraborty, S., & Saha, P. (2011). Biosorption of basic green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids and Surface B, 84, 520–527.

    Article  CAS  Google Scholar 

  • Cottet, L., Almeida, C. A. P., Naidek, N., Viante, M. F., Lopes, M. C., & Debacher, N. A. (2014). Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Applied Clay Science, 95, 25–31.

    Article  CAS  Google Scholar 

  • Couillard, D. (1994). The use of peat in wastewater treatment. Water Research, 28, 1261–1274.

    Article  CAS  Google Scholar 

  • Ding, L., Zou, B., Gao, W., Liu, Q., Wang, Z., Guo, Y., Wang, X., & Liu, Y. (2014). Adsorption of Rhodamine-B from aqueous solution using treated rice husk-based activated carbon. Colloids and Surfaces A, 446, 1–7.

    Article  CAS  Google Scholar 

  • Erdem, M., Yüksel, E., Tay, T., Çimen, Y., & Türk, H. (2009). Synthesis of novel methacrylate based adsorbents and their sorptive properties towards p-nitrophenol from aqueous solutions. Journal of Colloid and Interface Science, 333, 40–48.

    Article  CAS  Google Scholar 

  • Fernandes, A. N., Almeida, C. A. P., Menezes, C. T. B., Debacher, N. A., & Sierra, M. M. D. (2007). Removal of methylene blue from aqueous solution by peat. Journal of Hazardous Materials, 144, 412–419.

    Article  CAS  Google Scholar 

  • Fernandes, A. N., Almeida, C. A. P., Debacher, N. A., & Sierra, M. M. D. (2010a). Isotherm and thermodynamic data of adsorption of methylene blue from aqueous solution onto peat. Journal of Molecular Structure, 982, 62–65.

    Article  CAS  Google Scholar 

  • Fernandes, A. N., Giovanela, M., Esteves, V. I., & Sierra, M. M. D. (2010b). Elemental and spectral properties of peat and soil samples and their respective humic substances. Journal of Molecular Structure, 971, 33–38.

    Article  CAS  Google Scholar 

  • Fernandes, A. N., Giovanela, M., Almeida, C. A. P., Esteves, V. I., Sierra, M. M. D., & Grassi, M. T. (2011). Remoção dos hormônios 17β-estradiol e 17α-etinilestradiol de soluções aquosas empregando turfa decomposta como material adsorvente. Quimica Nova, 34, 1526–1533.

    Article  CAS  Google Scholar 

  • Freundlich, H. M. F. (1906). Uber die adsorption in losungen. Zeitschrift für Physikalische Chemie, 57, 385–470.

    CAS  Google Scholar 

  • Girardello, F., Guégan, R., Esteves, V. I., Baumvol, I. J. R., Sierra, M. M. D., Crespo, J. S., Fernandes, A. N., & Giovanela, M. (2013). Characterization of Brazilian peat samples by applying a multimethod approach. Spectroscopy Letters, 46, 201–210.

    Article  CAS  Google Scholar 

  • Goulart, E.P. (1995). Matérias primas: Caracterização mineralógica, Curso Internacional de Treinamento em Grupo em Tecnologia Cerâmica, IPT/JICA, Cap. 5b.

  • Ho, Y. S. (2004). Citation review of Lagergreen kinetic rate equation on adsorption reaction. Scientometrics, 59, 171–177.

    Article  CAS  Google Scholar 

  • Hu, Z., Chen, H., Ji, F., & Yuan, S. (2010). Removal of Congo Red from aqueous solution by cattail root. Journal of Hazardous Materials, 173, 292–297.

    Article  CAS  Google Scholar 

  • Huang, J., Yan, C., & Huang, K. (2008). Removal of p-nitrophenol by water-compatible hypercrosslinked resin functionalized with formaldehyde carbonyl groups and Xad-4 in aqueous solution: a comparative study. Journal of Colloid Interface Science, 332, 60–64.

    Article  Google Scholar 

  • Iram, M., Guo, C., Guan, Y., Ishfaq, A., & Liu, H. (2010). Adsorption and magnetic removal of neutral red dye from aqueous solution using Fe3O4 hollow nanospheres. Journal of Hazardous Materials, 181, 1039–1050.

    Article  CAS  Google Scholar 

  • Jing, Q., Yi, Z., Lin, D., Zhu, L., & Yang, K. (2013). Enhanced sorption of naphthalene and p-nitrophenol by nano-SiO2 modified with a cationic surfactant. Water Research, 47, 4006–4012.

    Article  CAS  Google Scholar 

  • Khenifi, A., Zohra, B., Kahina, B., Houari, H., & Zoubir, D. (2009). Removal of 2,4-DCP from wastewater by CTAB/bentonite using one-step and two-step methods: a comparative study. Chemical Engineering Journal, 146, 345–354.

    Article  CAS  Google Scholar 

  • Ko, C. H., Fan, C., Chiang, P. N., Wang, M. K., & Lin, K. C. (2007). p-Nitrophenol, phenol and aniline sorption by organo-clays. Journal of Hazardous Materials, 149, 275–282.

    Article  CAS  Google Scholar 

  • Krasil’nikova, O. K., Kul’kova, T. A., & Larin, A. V. (2008). Thermodynamics of the adsorption of 4-nitrophenol from aqueous solutions at activated charcoal. Protection of Metals, 44, 343–347.

    Article  Google Scholar 

  • Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Journal of the American Chemical Society, 38, 2221–2295.

    Article  CAS  Google Scholar 

  • Li, K., Zheng, Z., Feng, J., Zhang, J., Luo, X., Zhao, G., & Huang, X. (2009). Adsorption of p-nitroaniline from aqueous solutions onto activated carbon fiber prepared from cotton stalk. Journal of Hazardous Materials, 166, 1180–1185.

    Article  CAS  Google Scholar 

  • Liu, B., Yang, F., Zou, Y., & Peng, Y. (2014a). Adsorption of phenol and p-nitrophenol from aqueous solutions on metal–organic frameworks: effect of hydrogen bonding. Journal of Chemical & Engineering Data, 59, 1476–1482.

    Article  CAS  Google Scholar 

  • Liu, D., Hao, L., & Fang, K. (2014b). Adsorption of cationic copolymer nanospheres onto cotton fibers investigated by a facile nephelometry. Colloids and Surfaces A, 452, 82–88.

    Article  CAS  Google Scholar 

  • Ma, Y., Zhou, Q., Li, A., Shuang, C., Shi, Q., & Zhang, M. (2014). Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline. Journal of Hazardous Materials, 266, 84–93.

    Article  CAS  Google Scholar 

  • Marco-Brown, J. L., Areco, M. M., Sánchez, R. M. T., & Afonso, M. S. (2014). Adsorption of picloram herbicide on montmorillonite: kinetic and equilibrium studies. Colloids and Surfaces A, 449, 121–128.

    Article  CAS  Google Scholar 

  • Mehrizad, A., Zare, K., Aghaie, H., & Dastmalchi, S. (2012). Removal of 4-chloro-2-nitrophenol occurring in drug and pesticide waste by adsorption onto nano-titanium dioxide. International Journal of Environmental Science and Technology, 9, 355–360.

    Article  CAS  Google Scholar 

  • Motsa, M. M., Thwala, J. M., Msagati, T. A. M., & Mamba, B. B. (2012). Adsorption of 2,4,6-trichlorophenol and ortho-nitrophenol from aqueous media using surfactant-modified clinoptilolite-polypropylene hollow fiber composites. Water, Air, and Soil Pollution, 223, 1555–1569.

    Article  CAS  Google Scholar 

  • Ngah, W. S. W., & Fatinathan, S. (2006). Chitosan flakes and chitosan-GLA beads for adsorption of p-nitrophenol in aqueous solution. Colloids and Surfaces A, 277, 214–222.

    Article  CAS  Google Scholar 

  • Nouri, S., & Hagheseresht, F. (2004). Adsorption of p-nitrophenol in untreated and treated activated carbon. Adsorption, 10, 79–86.

    Article  CAS  Google Scholar 

  • Nourmohammadian, F., Davoodzadeh, M., & Alizadeh, A. A. (2007). New cyclopentadiene derivatives as novel pH indicators. Dyes and Pigments, 74(741–743), 2007.

    Google Scholar 

  • Ofomaja, A. E., & Unuabonah, E. I. (2013). Kinetics and time-dependent Langmuir modeling of 4-nitrophenol adsorption onto Mansonia sawdust. Journal of the Taiwan Institute of Chemical Engineers, 44, 566–576.

    Article  CAS  Google Scholar 

  • Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. Science of the Total Environment, 409, 4141–4166.

    Article  CAS  Google Scholar 

  • Ozcan, A., Oncu, E. M., & Ozcan, A. S. (2006). Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite. Colloids and Surfaces A, 277, 90–97.

    Article  Google Scholar 

  • Pan, B., Chen, X., Pan, B., Zhang, W., Zhang, X., & Zhang, Q. (2006). Preparation of an aminated macroreticular resin adsorbent and its adsorption of p-nitrophenol from water. Journal of Hazardous Materials, 137, 1236–1240.

    Article  CAS  Google Scholar 

  • Petroni, S. L. G., Pires, M. A. F., & Munita, C. S. (2000). Adsorção de zinco e cádmio em colunas de turfa. Quimica Nova, 23, 477–481.

    Article  CAS  Google Scholar 

  • Ringqvist, L., Holmgren, A., & Öborn, I. (2002). Poorly humified peat as an adsorbent for metals in wastewater. Water Research, 36, 2394–3404.

    Article  CAS  Google Scholar 

  • Romero-Gonzalez, J., Peralta-Videa, J. R., Rodriguez, E., Ramirez, S. L., & Gardea-Torresdey, J. L. (2005). Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. The Journal of Chemical Thermodynamics, 37, 343–347.

    Article  CAS  Google Scholar 

  • Rovani, S., Fernandes, A. N., Prola, L. D. T., Lima, E. C., Santos, W. O., & Adebayo, M. A. (2014). Removal of cibacron brilliant yellow 3G-P dye from aqueous solutions by brazilian peats as biosorbents. Chemical Engineering Communications, 201, 1431–1458.

    Article  CAS  Google Scholar 

  • Saha, P., Chowdhury, S., Gupta, S., & Kumar, I. (2010). Insight into adsorption equilibrium, kinetics and thermodynamics of Malachite Green onto clayey soil of Indian origin. Chemical Engineering Journal, 165, 874–882.

    Article  CAS  Google Scholar 

  • Shao, Y., Zhang, H., & Yan, Y. (2013). Adsorption dynamics of p-nitrophenol in structured fixed bed with micro entrapped activated carbon. Chemical Engineering Journal, 225, 481–488.

    Article  CAS  Google Scholar 

  • Tang, D., Zheng, Z., Lin, K., Luan, J., & Zhang, J. (2007). Adsorption of p-nitrophenol from aqueous solutions onto activated carbon fiber. Journal of Hazardous Materials, 143, 49–56.

    Article  CAS  Google Scholar 

  • Tewari, B. B. (2014). Removal of p-aminophenol and nitrophenol from aqueous solution through adsorption on bismuth, lead, and manganese ferrocyanides and their relevance to environmental issues. Russian Journal of Physical Chemistry, 88, 1564–1568.

    Article  CAS  Google Scholar 

  • Twardowska, I., Kysiol, J., Goldrath, T., & Avnimelech, Y. (1999). Adsorption of zinc onto peat from peatlands of Poland and Israel. Journal of Geochemical Exploration, 66, 387–405.

    Article  CAS  Google Scholar 

  • Weber, W. J., Jr., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89, 31–60.

    Google Scholar 

  • Xue, G., Gao, M., Gu, Z., Luo, Z., & Hu, Z. (2013). The removal of p-nitrophenol from aqueous solutions by adsorption using gemini surfactants modified montmorillonites. Chemical Engineering Journal, 218, 223–231.

    Article  CAS  Google Scholar 

  • Yao, Y., Xu, F., Chen, M., Xu, Z., & Zhu, Z. (2010). Adsorption behavior of methylene blue on carbon nanotubes. Bioresource Technology, 101, 3040–3046.

    Article  CAS  Google Scholar 

  • Yao, Y.-X., Li, H.-B., Liu, J.-Y., Tan, X.-L., Yu, J.-G. & Peng, Z.-G. (2014). Removal and adsorption of p-nitrophenol from aqueous solutions using carbon nanotubes and their composites. Journal of Nanomaterials, 1–9.

  • Ye, P., & Lemley, A. T. (2009). Adsorption effect on the degradation of 4,6-o-dinitrocresol and p-nitrophenol in a montmorillonite clay slurry by AFT. Water Research, 43, 1303–1312.

    Article  CAS  Google Scholar 

  • Yuan, X., Sun, H., & Guo, D. (2012). The removal of COD from coking wastewater using extraction replacement-biodegradation coupling. Desalination, 289, 45–50.

    Article  CAS  Google Scholar 

  • Zhi-rong, L., Li-min, Z., Peng, W., Kai, Z., Chuan-xi, W., & Hui-hua, L. (2008). Competitive adsorption of heavy metal ions on peat. Journal of China University of Mining and Technology, 18, 255–260.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq—Brazil) for providing funding support of the project MCT/CNPq No. 14/2009 and Universal and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Fernandes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaerger, S., dos Santos, A., Fernandes, A.N. et al. Removal of p-Nitrophenol from Aqueous Solution Using Brazilian Peat: Kinetic and Thermodynamic Studies. Water Air Soil Pollut 226, 236 (2015). https://doi.org/10.1007/s11270-015-2500-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-015-2500-9

Keywords

Navigation