Skip to main content

Advertisement

Log in

Effect of Temperature on Nitrogen Removal and Electricity Generation of a Dual-Chamber Microbial Fuel Cell

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microbial fuel cells (MFCs) have gained increasing attention as an effective pathway for wastewater treatment and electrical energy recovery. In this study, the pollutant removal, N2O production, and electricity generation at different temperatures (25–45 °C) in a dual-chamber MFC were investigated. The optimal temperature for pollutant removal and electricity generation was 35 °C. The results showed that maximal removal efficiencies of chemical oxygen demand (COD), ammonium (NH4+), and total nitrogen (TN) were 73.98 ± 0.92%, 99.24 ± 0.85%, and 8.28 ± 0.45%, respectively. The maximum of nitrous oxide (N2O) was 4.27 ± 0.11 mg L−1 at 35 °C. Meanwhile, the maximum of power density, current density, and coulombic efficiency (CE) were 0.54 W m−3, 6.51 A m−3, and 8.12 ± 0.04%, respectively. The results indicate that MFC is a promising technology for simultaneous pollutant removal and electricity generation in temperate regions. Moreover, microbial community analysis suggested that the dominant reaction in the cathode may include aerobic nitrification, autotrophic denitrification, heterotrophic denitrification (aerobic and anoxic), reduction of oxygen, and nitrogen fixation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aelterman, P., Freguia, S., Keller, J., Verstraete, W., & Rabaey, K. (2008). The anode potential regulates bacterial activity in microbial fuel cells. Applied Micrbiology & Biotechnology, 78(3), 409–418.

    Article  CAS  Google Scholar 

  • Al-Mamun, A., Baawain, M. S., Egger, F., Al-Muhtaseb, A. A. H., & Ng, H. Y. (2017). Optimization of a baffled-reactor microbial fuel cell using autotrophic denitrifying biocathode for removing nitrogen and recovering electrical energy. Biochemical Engineering Journal, 120, 93–102.

    Article  CAS  Google Scholar 

  • Anders, H. J., Kaetzke, A., Kämpfer, P., Ludwig, W., & Fuchs, G. (1995). Taxonomic position of aromatic-degrading denitrifying pseudomonad strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the Beta subclass of the Proteobacteria. International Journal of Systematic Bacteriology, 45(2), 327–333.

    Article  CAS  Google Scholar 

  • APHA. (2005). Standard methods for the examination of water and wastewater, 21st ed. Washington, DC: American Public Health Association.

  • Bae, H. S., Rash, B. A., Rainey, F. A., Nobre, M. F., Tiago, I., Da, C. M., & Moe, W. M. (2007). Description of Azospira restricta sp. nov., a nitrogen-fixing bacterium isolated from groundwater. International Journal of Systematic & Evolutionary Microbiology, 57(7), 1521–1526.

    Article  CAS  Google Scholar 

  • Campo, A. G. D., Lobato, J., Cañizares, P., Rodrigo, M. A., & Morales, F. J. F. (2013). Short-term effects of temperature and COD in a microbial fuel cell. Applied Energy, 101(1), 213–217.

    Article  CAS  Google Scholar 

  • Choi, Y., Jung, E., Kim, S., & Jung, S. (2003). Membrane fluidity sensoring microbial fuel cell. Bioelectrochemistry, 59(2), 121–127.

    Article  CAS  Google Scholar 

  • Cournet, A., Délia, M. L., Bergel, A., Roques, C., & Bergé, M. (2010). Electrochemical reduction of oxygen catalyzed by a wide range of bacteria including Gram-positive. Electrochemistry Communications, 12(4), 505–508.

    Article  CAS  Google Scholar 

  • Du, L., Chen, Q., Liu, P., Zhang, X., Wang, H., Zhou, Q., Xu, D., & Wu, Z. (2017). Phosphorus removal performance and biological dephosphorization process in treating reclaimed water by Integrated Vertical-flow Constructed Wetlands (IVCWs). Bioresource Technology, 243, 204–211.

    Article  CAS  Google Scholar 

  • Foss, S., & Harder, J. (1998). Thauera linaloolentis sp. nov. and Thauera terpenica sp. nov., isolated on oxygen-containing monoterpenes (linalool, menthol, and eucalyptol) nitrate. Systematic & Applied Microbiology, 21(3), 365–373.

    Article  CAS  Google Scholar 

  • Gao, K., Zhao, J., Ge, G., Ding, X., Wang, S., Li, X., & Yu, Y. (2016). Effect of ammonium concentration on N2O emission during autotrophic nitritation under oxygen-limited conditions. Environmental Engineering Science, 34, 96–102.

    Article  CAS  Google Scholar 

  • Ge, Q., Yue, X., & Wang, G. (2015). Simultaneous heterotrophic nitrification and aerobic denitrification at high initial phenol concentration by isolated bacterium Diaphorobacter sp. PD-7. Journal of China Chemical Engineering, 23(5), 835–841.

    Article  CAS  Google Scholar 

  • Guo, N. (2013). Effect of temperature on ammoxidation and nitrous oxide emission in partial nitrification. Chinese Journal of Environmental Engineering, 7(4), 1308–1312 (In Chinese).

    CAS  Google Scholar 

  • Hao, L. P., Lü, F., Li, L., Shao, L. M., & He, P. J. (2012). Shift of pathways during initiation of thermophilic methanogenesis at different initial pH. Bioresource Technology, 126(12), 418–424.

    Article  CAS  Google Scholar 

  • Holtanhartwig, L., Dorsch, P., & Bakken, L. R. (2002). Low temperature control of soil denitrifying communities: kinetics of N2O production and reduction. Soil Biology & Biochemistry, 34(11), 1797–1806.

    Article  CAS  Google Scholar 

  • IPCC, (2013). Climate change: the physical science basis, Stockholm, Sweden.

  • Ishii, S., Suzuki, S., Nordenkrichmar, T. M., Wu, A., Yamanaka, Y., Nealson, K. H., & Bretschger, O. (2013). Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells. Water Research, 47(19), 7120–7130.

    Article  CAS  Google Scholar 

  • Jadhav, G. S., & Ghangrekar, M. M. (2009). Performance of microbial fuel cell subjected to variation in pH, temperature, external load and substrate concentration. Bioresource Technology, 100(2), 717–723.

    Article  CAS  Google Scholar 

  • Jayashree, C., Arulazhagan, P., Kumar, S. A., Kaliappan, S., Icktae, Y., & Banu, J. R. (2014a). Bioelectricity generation from coconut husk retting wastewater in fed batch operating microbial fuel cell by phenol degrading microorganism. Biomass and Bioenergy, 69, 249–254.

    Article  CAS  Google Scholar 

  • Jayashree, C., Janshi, G., Yeom, I. T., Kumar, S. A., & Banu, J. R. (2014b). Effect of low temperature thermo-chemical pretreatment of dairy waste activated sludge on the performance of microbial fuel cell. International Journal of Electrochemical Science, 9(10), 5732–5742.

    Google Scholar 

  • Jayashree, C., Sweta, S., Arulazhagan, P., Yeom, I. T., Iqbal, M. I. I., & Banu, J. R. (2015). Electricity generation from retting wastewater consisting of recalcitrant compounds using continuous upflow microbial fuel cell. Biotechnology and Bioprocess Engineering, 20(4), 753–759.

    Article  CAS  Google Scholar 

  • Jayashree, C., Tamilarasan, K., Rajkumar, M., Arulazhagan, P., Yogalakshmi, K. N., & Srikanth, M. (2016). Treatment of seafood processing wastewater using upflow microbial fuel cell for power generation and identification of bacterial community in anodic biofilm. Journal of Environmental Management, 180, 351–358.

    Article  CAS  Google Scholar 

  • Kersters, K. and Vancanneyt, M. (2005). Bergey’s manual of systematic bacteriology, Springer Verlag.

  • Kim, J. H., Guo, X., & Park, H. S. (2008). Comparison study of the effects of temperature and free ammonia concentration on nitrification and nitrite accumulation. Process Biochemistry, 43(2), 154–160.

    Article  CAS  Google Scholar 

  • Kim, T., An, J., Lee, H., Jang, J. K., & Chang, I. S. (2016). pH-dependent ammonia removal pathways in microbial fuel cell system. Bioresource Technology, 215, 290–295.

    Article  CAS  Google Scholar 

  • Kobayashi, M. (1982). The role of phototrophic bacteria in nature and their utilization. Advances in agricultural microbiology.

  • Larrosa-Guerrero, A., Scott, K., Head, I. M., Mateo, F., Ginesta, A., & Godinez, C. (2010). Effect of temperature on the performance of microbial fuel cells. Fuel, 89(12), 3985–3994.

    Article  CAS  Google Scholar 

  • Lersten, N. R., & Horner, H. T. (1976). Bacterial leaf nodule symbiosis in angiosperms with emphasis on Rubiaceae and Myrsinaceae. Botanical Review, 42(2), 145–214.

    Article  Google Scholar 

  • Li, X., Hu, B., Suib, S., Lei, Y., & Li, B. (2010). Manganese dioxide as a new cathode catalyst in microbial fuel cells. Journal of Power Sources, 195(9), 2586–2591.

    Article  CAS  Google Scholar 

  • Li, W., Zhang, S., Gang, C., & Hua, Y. (2014). Simultaneous electricity generation and pollutant removal in microbial fuel cell with denitrifying biocathode over nitrite. Applied Energy, 126, 136–141.

    Article  CAS  Google Scholar 

  • Li, C., Ren, H. Q., Xu, M., & Cao, J. S. (2015). Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis. Bioresource Technology, 175(8), 545–552.

    CAS  Google Scholar 

  • Li, Y., Williams, I., Xu, Z. H., Li, B. K., & Li, B. T. (2016). Energy-positive nitrogen removal using the integrated short-cut nitrification and autotrophic denitrification microbial fuel cells (MFCs). Applied Energy, 163, 352–360.

    Article  CAS  Google Scholar 

  • Liu, H., Cheng, S., & Logan, B. E. (2005). Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration. Environmental Science & Technology, 39(14), 5488–5493.

    Article  CAS  Google Scholar 

  • Logan, B. E., Hamelers, B., Rozendal, R., Schrorder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  • Mergaert, J., Cnockaert, M. C., & Swings, J. (2003). Thermomonas fusca sp. nov. and Thermomonas brevis sp. nov., two mesophilic species isolated from a denitrification reactor with poly(epsilon-caprolactone) plastic granules as fixed bed, and emended description of the genus Thermomonas. International Journal of Systematic & Evolutionary Microbiology, 53(Pt 6), 1961–1966.

    Article  CAS  Google Scholar 

  • Michie, I. S., Kim, J. R., Dinsdale, R. M., Guwy, A. J., & Premier, G. C. (2011). The influence of psychrophilic and mesophilic start-up temperature on microbial fuel cell system performance. Energy & Environmental Science, 4(3), 1011–1019.

    Article  CAS  Google Scholar 

  • Min, B., Román, O. B., & Angelidaki, I. (2008). Importance of temperature and anodic medium composition on microbial fuel cell (MFC) performance. Biotechnology Letters, 30(7), 1213–1218.

    Article  CAS  Google Scholar 

  • Mousavi, S. A. R., Ibrahim, S., Aroua, M. K., & Ghafari, S. (2011). Bio-electrochemical denitrification—a review. International Journal of Chemical & Environmental Engineering, 2(2), 140–146.

    CAS  Google Scholar 

  • Pai, S. L., Chong, N. M., & Chen, C. H. (1999). Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment. Bioresource Technology, 68(2), 179–185.

    Article  CAS  Google Scholar 

  • Parot, S., Nercessian, O., Delia, M. L., Achouak, W., & Bergel, A. (2009). Electrochemical checking of aerobic isolates from electrochemically active biofilms formed in compost. Journal of Applied Microbiology, 106(4), 1350–1359.

    Article  CAS  Google Scholar 

  • Parot, S., Vandecandelaere, I., Cournet, A., Délia, M. L., Vandamme, P., Bergé, M., Roques, C., & Bergel, A. (2011). Catalysis of the electrochemical reduction of oxygen by bacteria isolated from electro-active biofilms formed in seawater. Bioresource Technology, 102(1), 304–311.

    Article  CAS  Google Scholar 

  • Scholten, E., Lukow, T., Auling, G., Kroppenstedt, R. M., Rainey, F. A., & Diekmann, H. (1999). Thauera mechernichensis sp. nov., an aerobic denitrifier from a leachate treatment plant. International Journal of Systematic Bacteriology, 49(3), 1045–1051.

    Article  CAS  Google Scholar 

  • Sotres, A., Cerrillo, M., Viñas, M., & Bonmatí, A. (2016). Nitrogen removal in a two-chambered microbial fuel cell: establishment of a nitrifying-denitrifying microbial community on an intermittent aerated cathode. Chemical Engineering Journal, 284, 905–916.

    Article  CAS  Google Scholar 

  • Su, J. J., Liu, B. Y., & Liu, C. Y. (2001). Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotropha ATCC 35512 and Pseudomonas stutzeri SU2 newly isolated from the activated sludge of a piggery wastewater treatment system. Journal of Applied Microbiology, 90(3), 457–462.

    Article  CAS  Google Scholar 

  • Tamilarasan, K., Banu, J. R., Jayashree, C., Yogalakshmi, K. N., & Gokulakrishnan, K. (2017). Effect of organic loading rate on electricity generating potential of upflow anaerobic microbial fuel cell treating surgical cotton industry wastewater. Journal of Environmental Chemical Engineering, 5(1), 1021–1026.

    Article  CAS  Google Scholar 

  • Tang, Z. Y., Geng, X., Wang, Z. L., & Xue, J. J. (2002). Preparation of Fe3+ doped manganese dioxide for electrode material of supercapacitor. Chinese Journal of Applied Chemistry, 19(10), 936–940 (In Chinese).

    CAS  Google Scholar 

  • Tian, M., Zhao, F., Shen, X., Chu, K., Wang, J., Chen, S., Guo, Y., & Liu, H. (2015). The first metagenome of activated sludge from full-scale anaerobic/anoxic/oxic (A2O) nitrogen and phosphorus removal reactor using Illumina sequencing. Journal of Environmental Science, 35(9), 181–190.

    Article  Google Scholar 

  • Vilar-Sanz, A., Puig, S., Garcia-Lledo, A., Trias, R., Balaguer, M. D., Colprim, J., & Baneras, L. (2013). Denitrifying bacterial communities affect current production and nitrous oxide accumulation in a microbial fuel cell. PLoS One, 8(5), e63460.

    Article  CAS  Google Scholar 

  • Virdis, B., Rabaey, K., Rozendal, R. A., Yuan, Z. G., & Keller, J. (2010). Simultaneous nitrification, denitrification and carbon removal in microbial fuel cells. Water Research, 44(9), 2970–2980.

    Article  CAS  Google Scholar 

  • Virdis, B., Read, S. T., Rabaey, K., Rozendal, R. A., Yuan, Z., & Keller, J. (2011). Biofilm stratification during simultaneous nitrification and denitrification (SND) at a biocathode. Bioresource Technology, 102(1), 334–341.

    Article  CAS  Google Scholar 

  • Wagner, M., Amann, R., Lemmer, H., & Schleifer, K. H. (1993). Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culture-dependent methods for describing microbial community structure. Applied & Environmental Microbiology, 59(5), 1520–1525.

    CAS  Google Scholar 

  • Wu, Y., Yang, Q., Zeng, Q., Ngo, H. H., Guo, W., & Zhang, H. (2017). Enhanced low C/N nitrogen removal in an innovative microbial fuel cell (MFC) with electroconductivity aerated membrane (EAM) as biocathode. Chemical Engineering Journal, 316, 315–322.

    Article  CAS  Google Scholar 

  • Xie, Z., Chen, H., Zheng, P., Zhang, J., Cai, J., & Abbas, G. (2013). Influence and mechanism of dissolved oxygen on the performance of ammonia-oxidation microbial fuel cell. International Journal of Hydrogen Energy, 38(25), 10607–10615.

    Article  CAS  Google Scholar 

  • Xing, D., Cheng, S., Logan, B. E., & Regan, J. M. (2010). Isolation of the exoelectrogenic denitrifying bacterium Comamonas denitrificans based on dilution to extinction. Applied Microbiology & Biotechnology, 85(5), 1575–1587.

    Article  CAS  Google Scholar 

  • Yang, B., Yang, Z. H., Hu, W. R., & Gu, Z. Q. (2007). Treatment of wastewater containing ammonia nitrogen by ammonia-oxidizing bacterium. Journal of Wuhan University of Technology, 29(3), 63–66 (In Chinese).

    Google Scholar 

  • Yang, X., Liu, L., Wu, B., Liu, S., & Chen, F. (2015). Screening and ammoxidation characteristics of an ammonium oxidizing bacteria group. Acta Microbiologica Sinica, 55(12), 1608–1618 (In Chinese).

    Google Scholar 

  • Yu, Y., Zhao, J., Wang, S., Zhao, H., Ding, X., & Gao, K. (2017). Nitrogen removal and electricity production at a double-chamber microbial fuel cell with cathode nitrite denitrification. Environmental Technology, 38(24), 3093–3101.

    CAS  Google Scholar 

  • Zhang, F., & He, Z. (2011). Simultaneous nitrification and denitrification with electricity generation in dual-cathode microbial fuel cells. Journal of Chemical Technology & Biotechnology, 87(1), 153–159.

    Article  CAS  Google Scholar 

  • Zhang, J., Wu, P., Hao, B., & Yu, Z. (2011). Heterotrophic nitrification and aerobic denitrification by the bacterium Pseudomonas stutzeri YZN-001. Bioresource Technology, 102(21), 9866–9869.

    Article  CAS  Google Scholar 

  • Zhang, T., Shao, M. F., & Ye, L. (2012). 454 pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME Journal, 6(6), 1137–1147.

    Article  CAS  Google Scholar 

  • Zhao, Y., & Sun, Y. (2012). Influence of temperature on the behavior of microbial fuel cells. Coal Conversion, 35(4), 89–93 (In Chinese).

    CAS  Google Scholar 

  • Zhao, H., Zhao, J., Li, F., & Li, X. (2016). Performance of denitrifying microbial fuel cell with biocathode over nitrite. Frontiers in Microbiology, 344, 1–7.

    Google Scholar 

  • Zhao, J., Wu, J., Li, X., Wang, S., Hu, B., & Ding, X. (2017). The denitrification characteristics and microbial community in the cathode of an MFC with aerobic denitrification at high temperatures. Frontiers in Microbiology, 8(9), 1–11.

    Google Scholar 

  • Zheng, W., Cai, T., Huang, M., & Chen, D. (2017). Comparison of electrochemical performances and microbial community structures of two photosynthetic microbial fuel cells. Journal of Bioscience and Bioengineering, 124(5), 551–558.

    Article  CAS  Google Scholar 

  • Zhou, Y., Pijuan, M., Zeng, R. J., & Yuan, Z. (2008). Free nitrous acid inhibition on nitrous oxide reduction by a denitrifying-enhanced biological phosphorus removal sludge. Environmental Science and Technology, 42(22), 8260–8265.

    Article  CAS  Google Scholar 

  • Zhu, G. C., Chen, G. D., Ran, Y., Han, L., & Wang, C. P. (2016). Enhanced simultaneous nitrification/denitrification in the biocathode of a microbial fuel cell fed with cyanobacteria solution. Process Biochemistry, 51(1), 80–88.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 51778057) and Fundamental Research Funds for the Central Universities (Grant No. 310828171004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Zhao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhao, J., Liu, S. et al. Effect of Temperature on Nitrogen Removal and Electricity Generation of a Dual-Chamber Microbial Fuel Cell. Water Air Soil Pollut 229, 244 (2018). https://doi.org/10.1007/s11270-018-3840-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-018-3840-z

Keywords

Navigation