Skip to main content
Log in

Adsorptive Removal of Arsenic and Mercury from Aqueous Solutions by Eucalyptus Leaves

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The study is a first-time investigation into the use of Eucalyptus leaves as a low-cost herbal adsorbent for the removal of arsenic (As) and mercury (Hg) from aqueous solutions. The adsorption capacity and efficiency were studied under various operating conditions within the framework of response surface methodology (RSM) by implementing a four-factor, five-level Box–Wilson central composite design (CCD). A pH range of 3–9, contact time (t) of 5–90 min, initial heavy metal (As or Hg) concentration (C 0) of 0.5–3.875 mg/L, and adsorbent dose (m) of 0.5–2.5 g/L were studied for the optimization and modeling of the process. The adsorption mechanism and the relevant characteristic parameters were investigated by four two-parameter (Langmuir, Freundlich, Temkin, and Dubinin–Radushkevich) isotherm models and four kinetic models (Lagergren’s pseudo-first order (PFO), Ho and McKay’s pseudo-second order (PSO), Weber–Morris intraparticle diffusion, and modified Freundlich). The new nonlinear regression-based empirical equations, which were derived within the scope of the study, showed that it might be possible to obtain a removal efficiency for As and Hg above 94% at the optimum conditions of the present process-related variables (pH = 6.0, t = 47.5 min, C 0 = 2.75 mg/L, and m = 1.5 mg/L). Based on the Langmuir isotherm model, the maximum adsorption or uptake capacity of As and Hg was determined as 84.03 and 129.87 mg/g, respectively. The results of the kinetic modeling indicated that the adsorption kinetics of As and Hg were very well described by Lagergren’s PFO kinetic model (R 2 = 0.978) and the modified Freundlich kinetic model (R 2 = 0.984), respectively. The findings of this study clearly concluded that the Persian Eucalyptus leaves demonstrated a higher performance compared to several other reported adsorbents used for the removal of heavy metals from the aqueous environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhtar, M., Iqbal, S., Kausar, A., Bhanger, M. I., & Shaheen, M. A. (2010). An economically viable method for the removal of selected divalent metal ions from aqueous solutions using activated rice husk. Colloids and Surfaces B: Biointerfaces, 75(1), 149–155.

    Article  CAS  Google Scholar 

  • Akinbiyi, A. (2000). Removal of lead from aqueous solutions by adsorption using peat moss, M.Sc. thesis, Applied Science in Environmental Systems Engineering, University of Regina, Regina, Saskatchewan, Canada.

  • Al Rmalli, S. W., Dahmani, A. A., Abuein, M. M., & Gleza, A. A. (2008). Biosorption of mercury from aqueous solutions by powdered leaves of castor tree (Ricinus communis L.) Journal of Hazardous Materials, 152(3), 955–959.

    Article  Google Scholar 

  • Al-Meshragi, M., Ibrahim, H. G., & Aboabboud, M. M. (2008). Equilibrium and kinetics of chromium adsorption on cement kiln dust. In: Proceedings of the World Congress on Engineering and Computer Science, WCECS 2008, October 22–24, 2008, San Francisco, USA, 54–62.

  • Al-Subu, M. M. (2002). The interaction effects of cypress (Cupressus sempervirens), cinchona (Eucalyptus longifolia) and pine (Pinushalepensis) leaves on their efficiencies for lead removal from aqueous solutions. Advances in Environmental Research, 6(4), 569–576.

    Article  CAS  Google Scholar 

  • Arivoli, S., Hema, M., Karuppaiah, M., & Saravanan, S. (2008). Adsorption of chromium ion by acid activated low cost carbon-kinetic, mechanistic, thermodynamic and equilibrium studies. Journal of Chemistry, 5(4), 820–831.

    Google Scholar 

  • Asasian, N., Kaghazchi, T., & Soleimani, M. (2012). Elimination of mercury by adsorption onto activated carbon prepared from the biomass material. Journal of Industrial and Engineering Chemistry, 18(1), 283–289.

    Article  CAS  Google Scholar 

  • Babić, B. M., Milonjić, S. K., Polovina, M. J., Čupić, S., & Kaludjerović, B. V. (2002). Adsorption of zinc, cadmium and mercury ions from aqueous solutions on an activated carbon cloth. Carbon, 40(7), 1109–1115.

    Article  Google Scholar 

  • Baikousi, M., Georgiou, Y., Daikopoulos, C., Bourlinos, A. B., Filip, J., Zbořil, R., Deligiannakis, Y., & Karakassides, M. A. (2015). Synthesis and characterization of robust zero valent iron/mesoporous carbon composites and their applications in arsenic removal. Carbon, 93, 636–647.

    Article  CAS  Google Scholar 

  • Bajpai, S. K., & Jain, A. (2010). Removal of copper (II) from aqueous solution using spent tea leaves (STL) as a potential sorbent. Water SA, 36(3), 221–228.

    CAS  Google Scholar 

  • Bhowmick, S., Chakraborty, S., Mondal, P., Van Renterghem, W., Van den Berghe, S., Roman-Ross, G., Chatterjee, D., & Iglesias, M. (2014). Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: kinetics and mechanism. Chemical Engineering Journal, 243, 14–23.

    Article  CAS  Google Scholar 

  • Binupriya, A. R., Sathishkumar, M., Swaminathan, K., Kuz, C. S., & Yun, S. E. (2008). Comparative studies on removal of Congo red by native and modified mycelial pellets of Trametes versicolor in various reactor modes. Bioresource Technology, 99(5), 1080–1088.

    Article  CAS  Google Scholar 

  • Bulut, Y., & Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194(1–3), 259–267.

    Article  CAS  Google Scholar 

  • Chen, Y. N., Chai, L. Y., & Shu, Y. D. (2008). Study of arsenic (V) adsorption on bone char from aqueous solution. Journal of Hazardous Materials, 160(1), 168–172.

    Article  CAS  Google Scholar 

  • Dehghani, M. H., Mohammadi, M., Mohammadi, M. A., Mahvi, A. H., Yetilmezsoy, K., Bhatnagar, A., Bhatnagar, A., Heibati, B., & McKay, G. (2016). Equilibrium and kinetic studies of trihalomethanes adsorption onto multi-walled carbon nanotubes. Water, Air, & Soil Pollution, 227(9), 1–17.

    Article  CAS  Google Scholar 

  • Demirbas, E., Kobya, M., Senturk, E., & Ozkan, T. (2004). Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA, 30(4), 533–539.

    Article  CAS  Google Scholar 

  • Dhawane, S. H., Kumar, T., & Halder, G. (2015). Central composite design approach towards optimization of flamboyant pods derived steam activated carbon for its use as heterogeneous catalyst in transesterification of Hevea brasiliensis oil. Energy Conversion and Management, 100, 277–287.

    Article  CAS  Google Scholar 

  • Dutta, S., Bhattacharyya, A., De, P., Ray, P., & Basu, S. (2009). Removal of mercury from its aqueous solution using charcoal-immobilized papain (CIP). Journal of Hazardous Materials, 172(2), 888–896.

    Article  CAS  Google Scholar 

  • ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) (2017). Technical Report 123, Freundlich isotherms. http://www.ecetoc.org/. Accessed 17.02.10.

  • Erhayem, M., Al-Tohami, F., Mohamed, R., & Ahmida, K. (2015). Isotherm, kinetic and thermodynamic studies for the sorption of mercury (II) onto activated carbon from Rosmarinus officinalis leaves. American Journal of Analytical Chemistry, 6, 1–10.

    Article  CAS  Google Scholar 

  • Fakhri, A. (2015). Investigation of mercury (II) adsorption from aqueous solution onto copper oxide nanoparticles: optimization using response surface methodology. Process Safety and Environmental Protection, 93, 1–8.

    Article  CAS  Google Scholar 

  • Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407–418.

    Article  CAS  Google Scholar 

  • Genç-Fuhrman, H., Tjell, J. C., & McConchie, D. (2004). Increasing the arsenate adsorption capacity of neutralized red mud (Bauxsol). Journal of Colloid and Interface Science, 271(2), 313–320.

    Article  Google Scholar 

  • Giri, A. K., & Patel, R. K. (2011). Studies on the removal of Hg(II) from water by activated adsorbent prepared from Eichhornia crassipes biomass, In: Proceedings of the 3rd International CEMEPE & SECOTOX Conference, Skiathos Island, Greece.

  • Goel, J., Kadirvelu, K., & Rajagopal, C. (2004). Competitive sorption of Cu (II), Pb (II) and Hg (II) ions from aqueous solution using coconut shell-based activated carbon. Adsorption Science & Technology, 22(3), 257–273.

    Article  CAS  Google Scholar 

  • Gupta, S. S., & Bhattacharyya, K. G. (2011). Kinetics of adsorption of metal ions on inorganic materials: a review. Advances in Colloid and Interface Science, 162(1), 39–58.

    Article  Google Scholar 

  • Gupta, A., Vidyarthi, S. R., & Sankararamakrishnan, N. (2015). Concurrent removal of As(III) and As(V) using green low cost functionalized biosorbent—Saccharum officinarum bagasse. Journal of Environmental Chemical Engineering, 3(1), 113–121.

    Article  CAS  Google Scholar 

  • Hadavifar, M., Bahramifar, N., Younesi, H., Rastakhiz, M., Li, Q., Yu, J., & Eftekhari, E. (2016). Removal of mercury (II) and cadmium (II) ions from synthetic wastewater by a newly synthesized amino and thiolated multi-walled carbon nanotubes. Journal of the Taiwan Institute of Chemical Engineers, 67, 397–405.

    Article  CAS  Google Scholar 

  • Hassan, S. S., Awwad, N. S., & Aboterika, A. H. (2008). Removal of mercury (II) from wastewater using camel bone charcoal. Journal of Hazardous Materials, 154(1), 992–997.

    Article  CAS  Google Scholar 

  • Heibati, B., Rodriguez-Couto, S., Turan, N. G., Ozgonenel, O., Albadarin, A. B., Asif, M., Tyagi, I., Agarwal, S., & Gupta, V. K. (2015). Removal of noxious dye—Acid Orange 7 from aqueous solution using natural pumice and Fe-coated pumice stone. Journal of Industrial and Engineering Chemistry, 31, 124–131.

    Article  CAS  Google Scholar 

  • Henke, K. (2009). Arsenic: environmental chemistry, health threats and waste treatment. Hoboken: John Wiley & Sons.

    Book  Google Scholar 

  • Hewings, G. J. D., Changnon, S., & Dridi, C. (2002). Testing for the significance of extreme weather and climate event on the state economies, the Regional Economics Application Laboratory, REAL 00–T– 6, S (pp. 1–16). Urbana: Mathews.

    Google Scholar 

  • Ho, Y. S., & McKay, G. (1998). Sorption of dye from aqueous solution by peat. Chemical Engineering Journal, 70(2), 115–124.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (2002). Application of kinetic models to the sorption of copper (II) on to peat. Adsorption Science & Technology, 20(8), 797–815.

    Article  CAS  Google Scholar 

  • Iakovleva, E., Maydannik, P., Ivanova, T. V., Sillanpää, M., Tang, W. Z., Mäkilä, E., Salonen, J., Gubal, A., Ganeev, A. A., Kamwilaisak, K., & Wang, S. (2016). Modified and unmodified low-cost iron-containing solid wastes as adsorbents for efficient removal of As (III) and As (V) from mine water. Journal of Cleaner Production, 133, 1095–1104.

    Article  CAS  Google Scholar 

  • Inbaraj, B. S., & Sulochana, N. (2006). Mercury adsorption on a carbon sorbent derived from fruit shell of Terminalia catappa. Journal of Hazardous Materials, 133(1), 283–290.

    Article  CAS  Google Scholar 

  • Kadirvelu, K., & Namasivayam, C. (2003). Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd (II) from aqueous solution. Advances in Environmental Research, 7(2), 471–478.

    Article  CAS  Google Scholar 

  • Kanel, S. R., Manning, B., Charlet, L., & Choi, H. (2005). Removal of arsenic (III) from groundwater by nanoscale zero-valent iron. Environmental Science & Technology, 39(5), 1291–1298.

    Article  CAS  Google Scholar 

  • Kang, M., Kawasaki, M., Tamada, S., Kamei, T., & Magara, Y. (2000). Effect of pH on the removal of arsenic and antimony using reverse osmosis membranes. Desalination, 131(1–3), 293–298.

    Article  CAS  Google Scholar 

  • Kavitha, D., & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, 98(1), 14–21.

    Article  CAS  Google Scholar 

  • Krishnan, K. A., Sreejalekshmi, K. G., & Baiju, R. S. (2011). Nickel (II) adsorption onto biomass based activated carbon obtained from sugarcane bagasse pith. Bioresource Technology, 102(22), 10239–10247.

    Article  Google Scholar 

  • Kurniawan, T. A., Chan, G. Y., Lo, W. H., & Babel, S. (2006). Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the Total Environment, 366(2), 409–426.

    Article  CAS  Google Scholar 

  • Lin, T. F., & Wu, J. K. (2001). Adsorption of arsenite and arsenate within activated alumina grains: equilibrium and kinetics. Water Research, 35(8), 2049–2057.

    Article  CAS  Google Scholar 

  • Liu, H. L., Lan, Y. W., & Cheng, Y. C. (2004). Optimal production of sulphuric acid by Thiobacillus thiooxidans using response surface methodology. Process Biochemistry, 39(12), 1953–1961.

    Article  CAS  Google Scholar 

  • Liu, M., Hou, L. A., Xi, B., Zhao, Y., & Xia, X. (2013). Synthesis, characterization, and mercury adsorption properties of hybrid mesoporous aluminosilicate sieve prepared with fly ash. Applied Surface Science, 273, 706–716.

    Article  CAS  Google Scholar 

  • Liu, J., Huang, X., Liu, J., Wang, W., Zhang, W., & Dong, F. (2014). Adsorption of arsenic(V) on bone char: batch, column and modeling studies. Environmental Earth Sciences, 72(6), 2081–2090.

    Article  CAS  Google Scholar 

  • Mangwandi, C., Suhaimi, S. N., Liu, J. T., Dhenge, R. M., & Albadarin, A. B. (2016). Design, production and characterisation of granular adsorbent material for arsenic removal from contaminated wastewater. Chemical Engineering Research and Design, 110, 70–81.

    Article  CAS  Google Scholar 

  • Mohan, D., & Pittman, C. U. (2007). Arsenic removal from water/wastewater using adsorbents—a critical review. Journal of Hazardous Materials, 142(1), 1–53.

    Article  CAS  Google Scholar 

  • Mondal, D. K., Nandi, B. K., & Purkait, M. K. (2013). Removal of mercury (II) from aqueous solution using bamboo leaf powder: equilibrium, thermodynamic and kinetic studies. Journal of Environmental Chemical Engineering, 1(4), 891–898.

    Article  CAS  Google Scholar 

  • Mosaferi, M., Taghipour, H., Hassani, A. M., Borghei, M., Kamali, Z., & Ghadirzadeh, A. (2008). Study of arsenic presence in drinking water sources: a case study. Iranian Journal of Health and Environment, 1(1), 19–28.

    Google Scholar 

  • Mosaferi, M., Nemati, S., Khataee, A., Nasseri, S., & Hashemi, A. A. (2014). Removal of arsenic (III, V) from aqueous solution by nanoscale zero-valent iron stabilized with starch and carboxymethyl cellulose. Journal of Environmental Health Science and Engineering, 12(1), 74.

    Article  Google Scholar 

  • Mousavi, S. Z., & Lotfi, Z. (2011). Removal of nickel and cadmium from aqueous solution by modified magnetic nanoparticles. Journal of Water and Wastewater, 1(95), 2–11.

    Google Scholar 

  • Mudasir, M., Karelius, K., Aprilita, N. H., & Wahyuni, E. T. (2016). Adsorption of mercury (II) on dithizone-immobilized natural zeolite. Journal of Environmental Chemical Engineering, 4(2), 1839–1849.

    Article  CAS  Google Scholar 

  • Nethaji, S., Sivasamy, A., & Mandal, A. B. (2013). Adsorption isotherms, kinetics and mechanism for the adsorption of cationic and anionic dyes onto carbonaceous particles prepared from Juglans regia shell biomass. International Journal of Environmental Science and Technology, 10(2), 231–242.

    Article  CAS  Google Scholar 

  • Ngah, W. W., & Hanafiah, M. A. K. M. (2008). Adsorption of copper on rubber (Hevea brasiliensis) leaf powder: kinetic, equilibrium and thermodynamic studies. Biochemical Engineering Journal, 39(3), 521–530.

    Article  Google Scholar 

  • Nguyen, C., & Do, D. D. (2001). The Dubinin–Radushkevich equation and the underlying microscopic adsorption description. Carbon, 39(9), 1327–1336.

    Article  CAS  Google Scholar 

  • Noori Sepehr, M. N., Yetilmezsoy, K., Marofi, S., Zarrabi, M., Ghaffari, H. R., Fingas, M., & Foroughi, M. (2014). Synthesis of nanosheet layered double hydroxides at lower pH: optimization of hardness and sulfate removal from drinking water samples. Journal of the Taiwan Institute of Chemical Engineers, 45(5), 2786–2800.

    Article  Google Scholar 

  • Organic Information Services Pvt Ltd. (2017). 6 Impressive eucalyptus benefits. Available from: https://www.organicfacts.net/health-benefits/herbs-and-spices/eucalyptus.html. Accessed September 20, 2017.

  • Patel, H., & Vashi, R. T. (2014). COD and BOD removal from textile wastewater using naturally prepared adsorbents and their activation forms using sulphuric acid. In H. A. Aziz & A. Mojiri (Eds.), Wastewater engineering: advanced wastewater treatment systems. Penang: IJSR Publications.

    Google Scholar 

  • Pehlivan, E., Tran, H. T., Ouédraogo, W. K. I., Schmidt, C., Zachmann, D., & Bahadir, M. (2013). Sugarcane bagasse treated with hydrous ferric oxide as a potential adsorbent for the removal of As(V) from aqueous solutions. Food Chemistry, 138(1), 133–138.

    Article  CAS  Google Scholar 

  • Qi, J., Zhang, G., & Li, H. (2015). Efficient removal of arsenic from water using a granular adsorbent: Fe–Mn binary oxide impregnated chitosan bead. Bioresource Technology, 193, 243–249.

    Article  CAS  Google Scholar 

  • Rajamohan, N., Rajasimman, M., Rajeshkannan, R., & Saravanan, V. (2014). Equilibrium, kinetic and thermodynamic studies on the removal of aluminum by modified Eucalyptus camaldulensis barks. Alexandria Engineering Journal, 53(2), 409–415.

    Article  Google Scholar 

  • Reed, B. E., Vaughan, R., & Jiang, L. (2000). As (III), As (V), Hg, and Pb removal by Fe-oxide impregnated activated carbon. Journal of Environmental Engineering, 126(9), 869–873.

    Article  CAS  Google Scholar 

  • Rocha, C. G., Zaia, D. A. M., da Silva Alfaya, R. V., & da Silva Alfaya, A. A. (2009). Use of rice straw as biosorbent for removal of Cu (II), Zn (II), Cd (II) and Hg (II) ions in industrial effluents. Journal of Hazardous Materials, 166(1), 383–388.

    Article  CAS  Google Scholar 

  • Samadi, M. T., Salimi, M., & Saghi, M. H. (2010). Comparison of granular activated carbon, natural clinoptilolite zeolite, and anthracite packed columns in removing mercury from drinking water. Water and Wastewater, 20(4), 54–59.

    Google Scholar 

  • Sampranpiboon, P., & Feng, X. (2016). Kinetic models on chromium (VI) adsorption onto carbonized oil palm kernel with potassium hydroxide activation. International Journal of Advances in Chemical Engineering and Biological Sciences, 3(1), 66–71.

    Google Scholar 

  • Sathishkumar, M., Binupriya, A. R., Vijayaraghavan, K., & Yun, S. I. (2007). Two and three-parameter isothermal modeling for liquid-phase sorption of Procion Blue H-B by inactive mycelial biomass of Panus fulvus. Journal of Chemical Technology and Biotechnology, 82(4), 389–398.

    Article  CAS  Google Scholar 

  • Shabbiri, K., Adnan, A., Jamil, S., Ahmad, W., Noor, B., & Rafique, H. M. (2012a). Medium optimization of protease production by Brevibacterium linens DSM 20158, using statistical approach. Brazilian Journal of Microbiology, 43(3), 1051–1061.

    Article  CAS  Google Scholar 

  • Shabbiri, K., Adnan, A., Noor, B., & Jamil, S. (2012b). Optimized production, purification and characterization of alpha amylase by Brevibacterium linens DSM 20158, using bio-statistical approach. Annals of Microbiology, 62(2), 523–532.

    Article  CAS  Google Scholar 

  • Silva, H. S., Ruiz, S. V., Granados, D. L., & Santángelo, J. M. (2010). Adsorption of mercury (II) from liquid solutions using modified activated carbons. Materials Research, 13(2), 129–134.

    Article  CAS  Google Scholar 

  • Sinha, A., & Khare, S. K. (2012). Mercury bioremediation by mercury accumulating Enterobacter sp. cells and its alginate immobilized application. Biodegradation, 23(1), 25–34.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2013). Arsenic in groundwater and the environment. In Essentials of medical geology, Springer Netherlands, pp. 279–310.

  • Thanawatpoontawee, S., Imyim, A., & Praphairaksit, N. (2016). Iron-loaded zein beads as a biocompatible adsorbent for arsenic (V) removal. Journal of Industrial and Engineering Chemistry, 43, 127–132.

    Article  CAS  Google Scholar 

  • Thompson, N. E., Emmanuel, G. C., George, N. I., & Adamu, I. K. (2015). Modelling of the kinetic and equilibrium sorption behaviour of crude oil on HDTMAB modified nigerian nanoclays. International Journal of Scientific & Technology Research, 4(2), 106–114.

    Google Scholar 

  • Türk, T., Alp, İ., & Deveci, H. (2009). Adsorption of As (V) from water using nanomagnetite. Journal of Environmental Engineering, 136(4), 399–404.

    Article  Google Scholar 

  • Ulmanu, M., Marañón, E., Fernández, Y., Castrillón, L., Anger, I., & Dumitriu, D. (2003). Removal of copper and cadmium ions from diluted aqueous solutions by low cost and waste material adsorbents. Water, Air, & Soil Pollution, 142(1), 357–373.

    Article  CAS  Google Scholar 

  • Varank, G., Demir, A., Yetilmezsoy, K., Top, S., Sekman, E., & Bilgili, M. S. (2012). Removal of 4-nitrophenol from aqueous solution by natural low-cost adsorbents. Indian Journal of Chemical Technology, 19(1), 7–25.

    CAS  Google Scholar 

  • Vimonses, V., Lei, S., Jin, B., Chow, C. W., & Saint, C. (2009). Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials. Chemical Engineering Journal, 148(2), 354–364.

    Article  CAS  Google Scholar 

  • Wang, Q., Hou, Y., Xu, Z., Miao, J., & Li, G. (2008). Optimization of cold-active protease production by the psychrophilic bacterium Colwellia sp. NJ341 with response surface methodology. Bioresource Technology, 99(6), 1926–1931.

    Article  CAS  Google Scholar 

  • Wang, S. Y., Tang, Y. K., Chen, C., Wu, J. T., Huang, Z., Mo, Y. Y., Zhang, K. X., & Chen, J. B. (2015). Regeneration of magnetic biochar derived from eucalyptus leaf residue for lead (II) removal. Bioresource Technology, 186, 360–364.

    Article  CAS  Google Scholar 

  • Weng, Y. H., Chaung-Hsieh, L. H., Lee, H. H., Li, K. C., & Huang, C. P. (2005). Removal of arsenic and humic substances (HSs) by electro-ultrafiltration (EUF). Journal of Hazardous Materials, 122(1), 171–176.

    Article  CAS  Google Scholar 

  • Yaghmaeian, K., Mashizi, R. K., Nasseri, S., Mahvi, A. H., Alimohammadi, M., & Nazmara, S. (2015). Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. Journal of Environmental Health Science and Engineering, 13(1), 55.

    Article  Google Scholar 

  • Yaghmaeian, K., Jaafarzadeh, N., Nabizadeh, R., Rasoulzadeh, H., & Akbarpour, B. (2016). Evaluating the performance of modified adsorbent of zero valent iron nanoparticles–chitosan composite for arsenate removal from aqueous solutions. Iranian Journal of Health and Environment, 8(4), 535–548.

    Google Scholar 

  • Yakout, S. M., & Elsherif, E. (2010). Batch kinetics, isotherm and thermodynamic studies of adsorption of strontium from aqueous solutions onto low cost rice-straw based carbons. Carbon: Science and Technology, 3(1), 144–153.

  • Yardim, M. F., Budinova, T., Ekinci, E., Petrov, N., Razvigorova, M., & Minkova, V. (2003). Removal of mercury (II) from aqueous solution by activated carbon obtained from furfural. Chemosphere, 52(5), 835–841.

    Article  CAS  Google Scholar 

  • Yenial, Ü., Bulut, G., & Ali Sirkeci, A. (2014). Arsenic removal by adsorptive flotation methods. CLEAN–Soil, Air, Water, 42(11), 1567–1572.

    Article  CAS  Google Scholar 

  • Yetilmezsoy, K., & Demirel, S. (2008). Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia vera L.) shells. Journal of Hazardous Materials, 153(3), 1288–1300.

    Article  CAS  Google Scholar 

  • Yetilmezsoy, K., Demirel, S., & Vanderbei, R. J. (2009). Response surface modeling of Pb (II) removal from aqueous solution by Pistacia vera L.: Box–Behnken experimental design. Journal of Hazardous Materials, 171(1), 551–562.

    Article  CAS  Google Scholar 

  • Zeng, L. (2004). Arsenic adsorption from aqueous solutions on an Fe (III)-Si binary oxide adsorbent. Water Quality Research Journal of Canada, 39(3), 267–275.

    CAS  Google Scholar 

  • Zhuang, Z., Huang, L., Wang, F., & Chen, Z. (2015). Effects of cyclodextrin on the morphology and reactivity of iron-based nanoparticles using Eucalyptus leaf extract. Industrial Crops and Products, 69, 308–313.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the personnel of the Environmental Health Laboratory, Tehran University of Medical Sciences.

Funding

The authors would like to thank Tehran University of Medical Sciences for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmood Alimohammadi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alimohammadi, M., Saeedi, Z., Akbarpour, B. et al. Adsorptive Removal of Arsenic and Mercury from Aqueous Solutions by Eucalyptus Leaves. Water Air Soil Pollut 228, 429 (2017). https://doi.org/10.1007/s11270-017-3607-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3607-y

Keywords

Navigation