Skip to main content
Log in

Adsorption of arsenic(V) on bone char: batch, column and modeling studies

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Bone char has been used as a low-cost adsorbent for the removal of As(V) from waste water. The batch experiments show that the Langmuir isotherm describes well the adsorption behavior. The adsorption process follows a pseudo-second-order kinetic model. The column experiments were conducted at pH = 4 and 10 mg/L an initial concentration of As(V). The breakthrough curves were investigated for various conditions, such as different flow rates, column bed heights, adsorption cycles, coexisting cations and anions such as Mn2+, Al3+, PO4 3−, SO4 2− and SiO3 2−. The convection–diffusion equation was used to model the experimental transport data of As(V) for these conditions. It has been found that the coexisting cations can enhance As(V) immobilization and increase retardation factor (R f), and coexisting anions significantly decrease the diffusion coefficient (D L) of As(V). The secondary adsorption phenomena were observed in the breakthrough curves of column studies of As(V) with cations, especially Mn2+. The regeneration experiments using distilled water and 0.1 mol/L NaOH solution were done to evaluate the desorption degree. The total desorbed amounts from whole column for three experiments decreased from 8.98 to 7.67 mg and the desorption degrees increased from 0.51 to 0.71 unexpectedly, which indicates that the regeneration operation is feasible. Finally, the chemical analysis of column effluents and infrared spectroscopic analysis of absorbent both revealed that the ligand exchange and electrostatic interaction are the main removal mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bellier N, Chazarenc F, Comeau Y (2006) Phosphorus removal from wastewater by mineral apatite. Water Res 40:2965–2971. doi:10.1016/j.watres.2006.05.016

    Article  Google Scholar 

  • Bigham JM, Kirk ND (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers C, Jambor J, Nordstrom D (eds) Sulfate minerals: crystallography, geochemistry and environmental significance. Washington DC, pp 351–403

  • Chen YN, Chai LY, Shu YD (2008) Study of arsenic (V) adsorption on bone char from aqueous solution. J Hazard Mater 160:168–172. doi:10.1016/j.jhazmat.2008.02.120

    Article  Google Scholar 

  • Cheung C, Porter J, McKay G (2001) Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char. Water Res 35:605–612. doi:10.1016/S0043-1354(00)00306-7

    Article  Google Scholar 

  • Christoffersen J, Christoffersen MR, Larsen R, Møller I (1991) Regeneration by surface-coating of bone char used for defluoridation of water. Water Res 25:227–229. doi:10.1016/0043-1354(91)90033-M

    Article  Google Scholar 

  • Clifford DA, Ghurye G (2002) Metal–oxide adsorption, ion exchange and coagulation–microfiltration for arsenic removal from water. In: Frankenberger WT Jr (ed) Environmental chemistry of arsenic, New York, pp 217–245

  • Conca JL, Wright J (2006) An Apatite II permeable reactive barrier to remediate groundwater containing Zn, Pb and Cd. Appl Geochem 21:1288–1300. doi:10.1016/j.apgeochem.2006.08.018

    Article  Google Scholar 

  • Ellis D, Frey H, Markey RM, Redwine JC, Navratil JD, Robbins RG, Schreier C, Smythe D, Sullivan EJ, Wickramanayake G (2002) Arsenic treatment technologies for soil, waste, and water. DTIC document

  • Fuller C, Bargar J, Davis J (2003) Molecular-scale characterization of uranium sorption by bone apatite materials for a permeable reactive barrier demonstration. Environ Sci Technol 37:4642–4649. doi:10.1021/es0343959

    Article  Google Scholar 

  • Giménez J, Pablo J, Martínez M, Rovira M, Valderrama C (2010) Reactive transport of arsenic(III) and arsenic(V) on natural hematite: experimental and modeling. J Colloid Interface Sci 348:293–297. doi:10.1016/j.jcis.2010.04.046

    Article  Google Scholar 

  • Goldberg S, Johnston CT (2001) Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J Colloid Interface Sci 234:204–216. doi:10.1006/jcis.2000.7295

    Article  Google Scholar 

  • Han Y-S, Gallegos TJ, Demond AH, Hayes KF (2011) FeS-coated sand for removal of arsenic(III) under anaerobic conditions in permeable reactive barriers. Water Res 45:593–604. doi:10.1016/j.watres.2010.09.033

    Article  Google Scholar 

  • Hossain M, Islam M (2008) Experimental and numerical modeling of arsenic transport in limestone. Energy Sources Part A 30:1189–1201. doi:10.1080/15567030601100670

    Article  Google Scholar 

  • Jang H, Kang S-H (2002) Phosphorus removal using cow bone in hydroxyapatite crystallization. Water Res 36:1324–1330. doi:10.1016/S0043-1354(01)00329-3

    Article  Google Scholar 

  • Katsoyiannis IA, Zouboulis AI (2002) Removal of arsenic from contaminated water sources by sorption onto iron-oxide-coated polymeric materials. Water Res 36:5141–5155. doi:10.1016/S0043-1354(02)00236-1

    Article  Google Scholar 

  • Kim Y, Kim C, Choi I, Rengaraj S, Yi J (2004) Arsenic removal using mesoporous alumina prepared via a templating method. Environ Sci Technol 38:924–931. doi:10.1021/es0346431

    Article  Google Scholar 

  • Ko DCK, Porter JF, McKay G (2001) Film-pore diffusion model for the fixed-bed sorption of copper and cadmium ions onto bone char. Water Res 35:3876–3886. doi:10.1016/S0043-1354(01)00114-2

    Article  Google Scholar 

  • Kuan W-H, Lo S-L, Wang MK, Lin C-F (1998) Removal of Se (IV) and Se (VI) from water by aluminum-oxide-coated sand. Water Res 32:915–923. doi:10.1016/S0043-1354(97)00228-5

    Article  Google Scholar 

  • Leupin OX, Hug SJ, Badruzzaman A (2005) Arsenic removal from Bangladesh tube well water with filter columns containing zerovalent iron filings and sand. Environ Sci Technol 39:8032–8037. doi:10.1021/es050205d

    Article  Google Scholar 

  • Liu J, Cheng H, Zhao F, Dong F, Frost RL (2012) Effect of reactive bed mineralogy on arsenic retention and permeability of synthetic arsenic-containing acid mine drainage. J Colloid Interface Sci 394:530–538. doi:10.1016/j.jcis.2012.12.014

    Article  Google Scholar 

  • Manning BA, Fendorf SE, Bostick B, Suarez DL (2002) Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environ Sci Technol 36:976–981. doi:10.1021/es0110170

    Article  Google Scholar 

  • Nguyen TV, Vigneswaran S, Ngo HH, Kandasamy J (2010) Arsenic removal by iron oxide coated sponge: experimental performance and mathematical models. J Hazard Mater 182:723–729. doi:10.1016/j.jhazmat.2010.06.094

    Article  Google Scholar 

  • Nickson R, McArthur J, Burgess W, Ahmed KM, Ravenscroft P, Rahmanñ M (1998) Arsenic poisoning of Bangladesh groundwater. Nature 395:338. doi:10.1038/26387

    Article  Google Scholar 

  • Reilly PB (1981) Bone char and activated carbon mixtures for sugar liquor purification. Google Patents

  • Reza AS, Jean J-S, Bundschuh J, Liu C-C, Yang H-J, Lee C-Y (2013) Vertical geochemical variations and arsenic mobilization in the shallow alluvial aquifers of the Chapai-Nawabganj District, northwestern Bangladesh: implication of siderite precipitation. Environ Earth Sci 68:1255–1270. doi:10.1007/s12665-012-1825-6

    Article  Google Scholar 

  • Robinson BC (2010) Mine drainage and related problems. New York

  • Sneddon I, Garelick H, Valsami-Jones E (2005) An investigation into arsenic(V) removal from aqueous solutions by hydroxylapatite and bone-char. Miner Mag 69:769–780

    Article  Google Scholar 

  • Su C, Puls RW (2003) In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate. Environ Sci Technol 37:2582–2587. doi:10.1021/es026351q

    Article  Google Scholar 

  • Thomas HC (1944) Heterogeneous ion exchange in a flowing system. J Am Chem Soc 66:1664–1666

    Article  Google Scholar 

  • Tournassat C, Charlet L, Bosbach D, Manceau A (2002) Arsenic(III) oxidation by birnessite and precipitation of manganese(II) arsenate. Environ Sci Technol 36:493–500. doi:10.1021/es0109500

    Article  Google Scholar 

  • WHO (2006) Guidelines for drinking water quality, 3rd edn. Geneva

  • Wu K, Liu R, Liu H, Zhao X, Qu J (2011) Arsenic(III, V) adsorption on iron-oxide-coated manganese sand and quartz sand: comparison of different carriers and adsorption capacities. Environ Eng Sci 28:643–651. doi:10.1089/ees.2010.0307

    Article  Google Scholar 

  • Yan G, Viraraghavan T, Chen M (2001) A new model for heavy metal removal in a biosorption column. Adsorpt Sci Technol 19:25–43. doi:10.1260/0263617011493953

    Article  Google Scholar 

  • Yang J, Song K, Kim B, Hong S, Cho D, Chang Y (2007) Arsenic removal by iron and manganese coated sand. Water Sci Technol 56:161. doi:10.2166/wst.2007.681

    Article  Google Scholar 

  • Yoon YH, James HN (1984) Application of gas adsorption kinetics I. A theoretical model for respirator cartridge service life. Am Ind Hyg Assoc J 45:509–516. doi:10.1080/15298668491400197

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 41372051) and the Opening Project of State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology (SKLCRSM13KFB03). The authors thank the anonymous reviewers who provided the detailed and helpful comments and opinions for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 374 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, J., Huang, X., Liu, J. et al. Adsorption of arsenic(V) on bone char: batch, column and modeling studies. Environ Earth Sci 72, 2081–2090 (2014). https://doi.org/10.1007/s12665-014-3116-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12665-014-3116-x

Keywords

Navigation