Skip to main content

Advertisement

Log in

Performance Analysis of Photolytic, Photocatalytic, and Adsorption Systems in the Degradation of Metronidazole on the Perspective of Removal Rate and Energy Consumption

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The efficiency of the following systems: photolysis (UV-C only), photocatalysis with titanium-dioxide (UV-C/TiO2), photocatalysis with granular-activated carbon (UV-C/GAC), and by adsorption on GAC, was assessed under different initial contaminant concentrations, i.e., 0.1–100 mg L−1. The experiments were conducted in a batch photocatalytic reactor (1.9 L and 32 W UV power). It was found that UV-C/TiO2 and UV-C/GAC systems showed fairly equal removal efficiencies under lower MNZ concentrations (0.1–5 mg L−1) compared to higher concentrations at similar catalyst loading of 2.5 g L−1. A decline in removal rate (based on first-order reaction) was observed with respect to increase in initial MNZ concentration in all systems. MNZ removal by adsorption on GAC was much lesser compared to UV-C only, UV-C/TiO2, and UV-C/GAC systems. The adsorption data well correlated with the Freundlich model indicated that the adsorption was on the heterogeneous surface of the catalyst. The effectiveness of the systems were evaluated by calculating electrical energy consumed per order (E EO). The lowest E EO value was found to be for UV-C/TiO2 (0.03 kWh m−3 order−1) for the degradation of 0.1 mg L−1 of MNZ compared to UV-C/GAC (0.06 kWh m−3 order−1), UV-C only (0.15 kWh m−3 order−1), and adsorption (0.44 kWh m−3 order−1). The total organic carbon and nitrogen ion analyses have confirmed the mineralization of MNZ via aliphatic carboxylic acid compounds in the photocatalytic system. Overall, the photocatalytic system seems to be an energy-efficient treatment option for the removal of MNZ and similar other micropollutants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander, J., Karaolia, P., Fatta-Kassinos, D., & Schwartz, T. (2016). Impacts of advanced oxidation processes on microbiomes during wastewater treatment. In D. Fatta-Kassinos, D. D. Dionysiou, & K. Klaus (Eds.), Advanced treatment technologies for urban wastewater reuse (pp. 129–144). Switzerland: Springer.

    Google Scholar 

  • Andreozzi, R., Caprio, V., Insola, A., & Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51–59.

    Article  CAS  Google Scholar 

  • Asha, C. R., & Kumar, M. (2015). Sulfamethoxazole in poultry wastewater: identification, treatability and degradation pathway determination in a membrane-photocatalytic slurry reactor. Journal of Environmental Science and Health Part-A Toxic/Hazardous Substances & Environmental Engineering, 50(10), 1011–1019.

    Article  CAS  Google Scholar 

  • Bendesky, A., Menendez, D., & Ostrosky-Wegman, P. (2002). Is metronidazole carcinogenic. Mutation Research, 511(2), 133–144.

    Article  CAS  Google Scholar 

  • Cai, Q., & Hu, J. (2017). Decomposition of sulfamethoxazole and trimethoprim by continuous UVA/LED/TiO2 photocatalysis: decomposition pathways, residual antibacterial activity and toxicity. Journal of Hazardous Materials, 323, 527–536.

    Article  CAS  Google Scholar 

  • Choquette-Labbe, M., Shewa, A. W., Lalman, A. J., & Shanmugam, R. S. (2014). Photocatalytic degradation of phenol and phenol derivatives using a nano-TiO2 catalyst: Integrating quantitative and qualitative factors using response surface methodology. Water, 6(6), 1785–1806.

    Article  Google Scholar 

  • Coutu, S., Wyrsch, V., Wynn, H. K., Rossi, L., & Barry, D. A. (2013). Temporal dynamics of antibiotics in wastewater treatment plant influent. Science of the Total Environonment, 458-460, 20–26.

    Article  CAS  Google Scholar 

  • Farzadkia, M., Bazrafshan, E., Esrafili, A., Yang, J. K., & Shirzad-Siboni, M. (2015). Photocatalytic degradation of metronidazole with illuminated TiO2 nanoparticles. Journal of Environmental Health Science & Engineering, 13, 35.

    Article  Google Scholar 

  • Gros, M., Petrovic, M., Ginebreda, A., & Barcelo, D. (2010). Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes. Environment International, 36(1), 15–26.

    Article  CAS  Google Scholar 

  • Guo, M., Yuan, Q., & Yang, J. (2013). Microbial selectivity of UV treatment on antibiotic-resistant heterotrophic bacteria in secondary effluents of wastewater treatment plants. Water Research, 47(16), 6388–6394.

    Article  CAS  Google Scholar 

  • Guo, J., Selby, K., & Boxall, A. B. (2016). Effects of antibiotics on the growth and physiology of chlorophytes, cyanobacteria, and a diatom. Archives of Environmental Contamination and Toxicology, 71(4), 589–602.

    Article  CAS  Google Scholar 

  • Hapeshi, E., Achilleos, A., Vasquez, M. I., Michael, C., Xekoukoulotakis, N. P., Mantzavinos, D., et al. (2010). Drugs degrading photocatalytically: Kinetics and mechanisms of ofloxacin and atenolol removal on titania suspensions. Water Research, 44(6), 1737–1746.

    Article  CAS  Google Scholar 

  • Kanakaraju, D., Glass, B. D., & Oelgemoller, M. (2014). Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environmental Chemistry Letters, 12(1), 27–47.

    Article  CAS  Google Scholar 

  • Kimosop, S. J., Getenga, Z. M., Orata, F., Okello, V. A., & Cheruiyot, J. K. (2016). Residue levels and discharge loads of antibiotics in wastewater treatment plants (WWTPs), hospital lagoons and rivers within Lake Victoria Basin, Kenya. Environmental Monitoring and Assessment, 188(9), 532.

    Article  Google Scholar 

  • Lien, L. T., Hoa, N. Q., Chuc, N. T., Thoa, N. T., Phuc, H. D., Diwan, V., et al. (2016). Antibiotics in wastewater of a rural and an urban hospital before and after wastewater treatment, and the relationship with antibiotic use—a one year study from Vietnam. International Journal of Environmental Research and Public Health, 13(6), 588.

    Article  Google Scholar 

  • Lupo, A., Coyne, S., & Berendonk, T. U. (2012). Origin and evolution of antibiotic resistance: The common mechanisms of emergence and spread in water bodies. Frontiers in Microbiology, 3, 18.

    Article  Google Scholar 

  • Martinez, C., Canle, M., Fernandez, M. I., Santaballa, J. A., & Faria, J. (2011). Kinetics and mechanism of aqueous degradation of carbamazepine by heterogeneous photocatalysis using nanocrystalline TiO2, ZnO and multi-walled carbon nanotubes–anatase composites. Applied Catalysis B: Environmental, 102, 563–571.

    Article  CAS  Google Scholar 

  • Mckinney, W. C., & Pruden, A. (2012). Ultraviolet disinfection of antibiotic resistant bacteria and their antibiotic resistant genes in water and wastewater. Environmental Science & Technology, 46(24), 13393–13400.

    Article  CAS  Google Scholar 

  • Pereira, L., Pereira, R., Oliveira, C. S., Apostol, L., Gavrelescu, M., Pons, M. N., et al. (2013). UV/TiO2 photocatalytic degradation of xanthine dyes. Photochemistry and Photobiology, 89(1), 33–39.

    Article  CAS  Google Scholar 

  • Perez, T., Garcia-Segura, S., El-Ghenymy, A., Nava, J. L., & Brillas, E. (2015). Solar photoelectro-Fenton degradation of the metronidazole using a flow plant with a Pt/air diffusion cell and a CPC photoreactor. Electrochimica Acta, 165, 173–181.

    Article  CAS  Google Scholar 

  • Petrovic, M., Radjenovic, J., & Barcelo, D. (2011). Advanced oxidation processes (AOPs) applied for wastewater and drinking water treatment, elimination of pharmaceuticals. Holistic approach to Environment, 12, 63–74.

    Google Scholar 

  • Prados-Joya, G., Sanchez-Polo, M., Rivera-Utrilla, J., & Ferro-Garcia, M. (2011). Photodegradation of nitroimidazoles in aqueous solution by ultraviolet radiation. Water Research, 45(1), 393–403.

    Article  CAS  Google Scholar 

  • Safari, G. H., Hoseini, M., Seyedsalehi, M., Kamani, H., Jaafari, J., & Mahvi, A. H. (2015). Photocatalytic degradation of tetracycline using nanoized titanium dioxide in aqueous solution. International Journal of Environmental Science & Technology, 12(2), 603–616.

    Article  CAS  Google Scholar 

  • Velasco, F. L., Fonseco, M. I., Parra, B. J., Lima, C. J., & Ania, O. C. (2012). Photochemical behavior of activated carbons under UV irradiation. Carbon, 50(1), 249–258.

    Article  CAS  Google Scholar 

  • Velasco, F. L., Maurino, V., Laurenti, E., Fonseca, M. I., Lima, C. J., et al. (2013). Photoinduced reactions occurring on activated carbons. A combined photooxidation and ESR study. Applied catalysis A: General, 15, 1–8.

    Google Scholar 

  • Velo-Gala, I., Lopez-Penalver, J. J., Sanchez-Polo, M., & Rivera-Utrilla, J. (2015). Role of activated carbon on micropollutants degradation by different radiation processes. Mediterranean Journal of Chemistry, 4, 68–80.

    Article  Google Scholar 

  • Verma, A., Sheoran, M., & Toor, A. P. (2013). Titanium dioxide mediated photocatalytic degradation of malathion in aqueous phase. Indian Journal of Chemical Technology, 20, 46–51.

    CAS  Google Scholar 

  • Vishnuganth, M. A., Remya, N., Kumar, M., & Selvaraju, N. (2016). Photocatalytic degradation of Carbofuran by TiO2-coated activated carbon: Model for kinetic, energy per order and economic analysis. Journal of Environmental Management, 181, 201–207.

    Article  CAS  Google Scholar 

  • Wu, Y., & Fassihi, R. (2005). Stability of metronidazole, tetracycline HCl and famotidine alone and in combination. International Journal of Pharmaceutics, 290, 1–13.

    Article  CAS  Google Scholar 

  • Zhu, X., Zhou, D., Cang, L., & Wang, Y. (2012). TiO2 photocatalytic degradation of 4-chlorobiphenyl as affected by solvents and surfactants. Journal of Soils and Sediments, 12(3), 376–385.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from Centre for Industrial Consultancy and Sponsored Research (ICSR), IIT Madras to execute this research work (Grant No: CIE/14-15/832/NFIG/SMAT and CIE/14-15/650/NFSC/SMAT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathava Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

N, N., Kumar, M. Performance Analysis of Photolytic, Photocatalytic, and Adsorption Systems in the Degradation of Metronidazole on the Perspective of Removal Rate and Energy Consumption. Water Air Soil Pollut 228, 339 (2017). https://doi.org/10.1007/s11270-017-3532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-017-3532-0

Keywords

Navigation