Skip to main content

Advertisement

Log in

Removal of Various Pollutants from Leachate Using a Low-Cost Technique: Integration of Electrolysis with Activated Carbon Contactor

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Landfill leachate contains a high concentration of organic pollutants that are active agents in water pollution. This study was conducted to remove various pollutants from landfill leachate through electrolysis and activated carbon (AC) treatments. A simple electrolytic reactor was designed to investigate the removal efficiency of these treatments for biochemical oxygen demand (BOD), chemical oxygen demand (COD), total suspended solids (TSSs), and total dissolved solids (TDSs) from landfill leachate at different electric current densities (CDs) and retention times (RTs). The results showed that the highest removal efficiencies for BOD and COD were 75.6 and 57 %, respectively, under a 7-V current for 4 h. It was also found that BOD, COD, TSS, and TDS removal efficiencies improved in proportion to an increase in CD and RT. However, pH gradually increased with an increase in CD and RT. A number of treated leachate samples were further polished by AC filtration to compare the effect of this additional process on the removal of color, BOD, COD, TSS, and TDS. This secondary treatment resulted in a higher removal of color and other pollutants than electrolysis alone. At 4 h RT, the BOD removal efficiency was 54.6 % at 3 V and 66.4 % at 5 V, and the efficiency increased to 61.5 and 70.5 %, respectively, after treatment by AC filtration. Under the same conditions, COD removal efficiency increased from 7.5 to 38.5 % at 3 V and from 31.1 to 49.5 % at 5 V. TSS and TDS removal efficiencies were also significantly improved by AC filtration. It is therefore concluded that 7 V of CD and 4 h of RT are the optimum parameters for removing pollutants from leachate and that the secondary treatment of AC filtration is an efficient method of further polishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adhoum, N., & Monser, L. (2004). Decolorization and removal of phenolic compounds from olive mill wastewater by electrocoagulation. Chemical Engineering and Processing, 43, 1281–1287.

    Article  CAS  Google Scholar 

  • APHA. (1998). Standard methods for the examination of water and wastewater. Washington DC: American Public Health Association.

    Google Scholar 

  • Bayramoglu, M., Can, O. T., Kobya, M., & Sozbir, M. (2004). Operating cost analysis of electrocoagulation of textile dye wastewater. Separation and Purification Technology, 37, 117–125.

    Article  CAS  Google Scholar 

  • Bonmati, A., & Flotats, X. (2003). Air stripping of ammonia from pig slurry: characterization and feasibility as a pre- of post-treatment to mesophilic anaerobic digestion. Waste Management, 23, 261–272.

    Article  CAS  Google Scholar 

  • Calvo, L. S., Leclerc, J. P., Tanguy, G., Cames, M. C., Paternotte, G., Valentin, G., Rostan, A., & Lapicque, F. (2003). An electrocoagulation unit for the purification of soluble oil wastes of high COD. Environmental Progress, 22, 57–65.

    Article  CAS  Google Scholar 

  • Can, O. T., Bayramoglu, M., & Kobya, M. (2003). Decolorization of reactive dye solutions by electrocoagulation using aluminum electrodes. Industrial and Engineering Chemistry Research, 42, 3391–3396.

    Article  CAS  Google Scholar 

  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38, 11–41.

    Article  Google Scholar 

  • Chen, X., Chen, G., & Yue, P. L. (2000a). Electrocoagulation and electroflotation of restaurant wastewater. Journal of Environmental Engineering, 126, 858–863.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, G., & Yue, P. L. (2000b). Separation of pollutants from restaurant wastewater by electrocoagulation. Separation and Purification Technology, 19, 65–76.

    Article  CAS  Google Scholar 

  • Chen, X., Chen, G., & Yue, P. L. (2002). Novel electrode system for electroflotation of wastewater. Environmental Science and Technology, 36, 778–783.

    Article  CAS  Google Scholar 

  • Cho, J. H., Lee, J. E., & Ra, C. S. (2010). Effects of electric voltage and sodium chloride level on electrolysis of swine wastewater. Journal of Hazardous Materials, 180(1), 535–541.

  • Costa, C. R., & Olivi, P. (2009). Effect of chloride concentration on the electrochemical treatment of a synthetic tannery wastewater. Electrochimica Acta, 54, 2046–2052.

    Article  CAS  Google Scholar 

  • Daneshvar, N., Oladegaragoze, A., & Djafarzadeh, N. (2006). Decolorization of basic dye solutions by electrocoagulation: an investigation of the effect of operational parameters. Journal of Hazardous Materials, 129, 116–122.

    Article  CAS  Google Scholar 

  • Domínguez, J. R., González, T., Palo, P., Sánchez-Martín, J., Rodrigo, M. A., & Sáez, C. (2012). Electrochemical degradation of a real pharmaceutical effluent. Water, Air, and Soil Pollution, 223(5), 2685–2694.

    Article  Google Scholar 

  • Fernandes, A., Spranger, P., Fonseca, A. D., Pacheco, M. J., Ciríaco, L., & Lopes, A. (2014). Effect of electrochemical treatments on the biodegradability of sanitary landfill leachates. Applied Catalysis. B: Environment, 144, 514–520.

    Article  CAS  Google Scholar 

  • Fornazari, A. L. T., Malpass, G. R., Miwa, D. W., & Motheo, A. J. (2012). Application of electrochemical degradation of wastewater composed of mixtures of phenol–formaldehyde. Water, Air, and Soil Pollution, 223(8), 4895–4904.

    Article  CAS  Google Scholar 

  • Holt, P. K., Barton, G. W., & Mitchell, C. A. (2005). The future for electrocoagulation as a localised water treatment technology. Chemosphere, 59, 355–367.

    Article  CAS  Google Scholar 

  • Ibanez, J. G., Takimoto, M., Vasquez, R., Rajeshwar, K., & Basak, S. (1995). Laboratory experiments on electrochemical remediation of the environment: electrocoagulation of oily wastewater. Journal of Chemical Education, 72, 1050–1052.

    Article  CAS  Google Scholar 

  • Ilhan, F., Kurt, U., Apaydin, O., & Gonullu, M. T. (2008). Treatment of leachate by electrocoagulation using aluminum and iron electrodes. Journal of Hazardous Materials, 154(1), 381–389.

    Article  CAS  Google Scholar 

  • Inan, H., Dimoglu, A., Simsek, H., & Karpuzcu, M. (2004). Olive oil mill wastewater treatment by means of electrocoagulation. Separation and Purification Technology, 36, 23–31.

    Article  CAS  Google Scholar 

  • Jeong, B. Y., Song, S. H., Baek, K. W., Cho, I. H., & Hwang, T. S. (2006). Preparation and properties of heterogeneous cation exchange membrane for recovery of ammonium ion from waste water. Polymer (Korea), 30, 486–491.

    CAS  Google Scholar 

  • Kabuk, H. A., İlhan, F., Avsar, Y., Kurt, U., Apaydin, O., & Gonullu, M. T. (2013). Investigation of leachate treatment with electrocoagulation and optimization by response surface methodology. CLEAN–Soil, Air, Water, 42(5), 571–577.

    Article  Google Scholar 

  • Khristoskova, S. (1984). Possibility of purification and decoloring wastewaters from the yeast industry by electrocoagulation. Nauchni Tr-Plovdski Uni. (Bul.), 22, 177–185.

    CAS  Google Scholar 

  • Kim, K. W., Kim, Y. J., Kim, I. T., Park, I. G., & Lee, E. H. (2006). Electrochemical conversion characteristics of ammonia to nitrogen. Water Research, 40, 1431–1441.

    Article  CAS  Google Scholar 

  • Kobya, M., Can, O. T., & Bayramoglu, M. (2003). Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. Journal of Hazardous Materials, 100, 163–178.

    Article  CAS  Google Scholar 

  • Kobya, M., Senturk, E., & Bayramoglu, M. (2006). Treatment of poultry slaughterhouse wastewaters by electrocoagulation. Journal of Hazardous Materials, 133, 172–176.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Chen, M. L. (1997). Treatment of textile wastewater by chemical methods for reuse. Water Research, 31, 868–876.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Lin, C. S. (1998). Reclamation of wastewater effluent from a chemical fiber plant. Desalination, 120, 185–195.

    Article  CAS  Google Scholar 

  • Lin, S. H., & Peng, C. F. (1994). Treatment of textile wastewaters by electrochemical method. Water Research, 28, 277–876.

    Article  CAS  Google Scholar 

  • Mahmoud, A., & Hoadley, A. F. A. (2012). An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater. Water Research, 46, 3364–3376.

    Article  CAS  Google Scholar 

  • Mollah, M. Y. A., Schennach, R., Parga, J. P., & Cocke, D. L. (2001). Electrocoagulation (EC)-science and applications. Journal of Hazardous Materials, 84, 29–41.

    Article  CAS  Google Scholar 

  • Öztürk, T., Veli, S., & Dimoglo, A. (2013). The effect of seawater conductivity on the treatment of leachate by electrocoagulation. Chemistry Biochemistry Engineering Quarterly, 27(3), 347–354.

    Google Scholar 

  • Peng, Y., 2013. Perspectives on technology for landfill leachate treatment. Arab. J. Chemistry. http://dx.doi.org/10.1016/j.arabjc.2013.09.031

  • Pouet, M. F., & Grasmick, A. (1995). Urban wastewater treatment by electrocoagulation and flotation. Water Science and Technology, 31, 275–283.

    Article  CAS  Google Scholar 

  • Rada, E. C., Istrate, I. A., Ragazzi, M., Andreottola, G., & Torretta, V. (2013). Analysis of electro-oxidation suitability for landfill leachate treatment through an experimental study. Sustainability, 5(9), 3960–3975.

    Article  CAS  Google Scholar 

  • Rahman, M. M., Salleh, M. A. M., Rashid, U., Ahsan, A., Hossain, M. M., & Ra, C. S. (2014). Production of slow release crystal fertilizer from wastewaters through struvite crystallization—a review. Arabic Journal Chemistry., 7(1), 139–155.

    Article  CAS  Google Scholar 

  • Rajeshwar, K., Ibanez, J. G., & Swain, G. M. (1994). Electrochemistry and the environment. Journal of Applied Electrochemistry, 24, 1077–1091.

    Article  CAS  Google Scholar 

  • Renk, R. R. (1988). Electrocoagulation of tar sand and oil shale wastewater. Energy Progress, 8, 205–208.

    CAS  Google Scholar 

  • Rizvi, H., Ahmad, N., Abbas, F., Bukhari, I. H., Yasar, A., Ali, S., Yasmeen, T, Riaz, M., 2013. Start-up of UASB reactors treating municipal wastewater and effect of temperature/sludge age and hydraulic retention time (HRT) on its performance. Arab. J. Chemistry. http://dx.doi.org/10.1016/j.arabjc.2013.12.016

  • Sanz, J., Lombrana, J. I., Luis, A. M. D., Ortueta, M., & Varona, F. (2003). Microwave and Fenton’s reagent oxidation of wastewater. Environmental Chemistry Letters, 1, 45–50.

    Article  CAS  Google Scholar 

  • Tsai, C. T., Lin, S. T., Shue, Y. C., & Su, P. L. (1997). Electrolysis of soluble organic matter in leachate from landfills. Water Research, 31, 3073–3081.

    Article  CAS  Google Scholar 

  • Un, U. T., Koparal, A. S., & Ogutveren, U. B. (2009). Hybrid processes for the treatment of cattle-slaughterhouse wastewater using aluminum and iron electrodes. Journal of Hazardous Materials, 164, 580–586.

    Article  Google Scholar 

  • Vijayaraghavan, K., Ahmad, D., & Ahmad, Y. A. Y. (2008). Electrolytic treatment of latex waste water. Desalination, 219, 214–221.

    Article  CAS  Google Scholar 

  • Wang, C. T., Chou, W. L., & Kuo, Y. M. (2009). Removal of COD from laundry wastewater by electrocoagulation/electroflotation. Journal of Hazardous Materials, 164, 81–86.

    Article  CAS  Google Scholar 

  • Xu, L. J., Sheldon, B. W., Larick, D. K., & Carawan, R. E. (2002). Recovery and utilization of useful by-products from egg processing wastewater by electrocoagulation. Poultry Science, 81, 785–792.

    Article  CAS  Google Scholar 

  • Yetilmezsoy, K., Ilhan, F., Zengin, Z. S., Sakar, S., & Gonullu, M. T. (2009). Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process: a post-treatment study. Journal of Hazardous Materials, 162, 120–132.

    Article  CAS  Google Scholar 

  • Zaleschi, L., Secula, M. S., Teodosiu, C., Stan, C. S., & Cretescu, I. (2014). Removal of rhodamine 6G from aqueous effluents by electrocoagulation in a batch reactor: assessment of operational parameters and process mechanism. Water, Air, and Soil Pollution, 225(9), 1–14.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The financial support provided by UPM under RUGS, 05-02-12-1874RU, 9,344,400 is acknowledged. Authors gratefully acknowledge Prof. Thamer, Dr. Nik NND and students who supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amimul Ahsan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahsan, A., Kamaludin, M., Rahman, M.M. et al. Removal of Various Pollutants from Leachate Using a Low-Cost Technique: Integration of Electrolysis with Activated Carbon Contactor. Water Air Soil Pollut 225, 2163 (2014). https://doi.org/10.1007/s11270-014-2163-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2163-y

Keywords

Navigation