Skip to main content
Log in

Application of Electrochemical Degradation of Wastewater Composed of Mixtures of Phenol–Formaldehyde

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The industrial wastewater from resin production plants contains as major components phenol and formaldehyde, which are traditionally treated by biological methods. As a possible alternative method, electrochemical treatment was tested using solutions containing a mixture of phenol and formaldehyde simulating an industrial effluent. The anode used was a dimensionally stable anode (DSA®) of nominal composition Ti/Ru0.3Ti0.7O2, and the solution composition during the degradation process was analyzed by liquid chromatography and the removal of total organic carbon. From cyclic voltammetry, it is observed that for formaldehyde, a small offset of the beginning of the oxygen evolution reaction occurs, but for phenol, the reaction is inhibited and the current density decreases. From the electrochemical degradations, it was determined that 40 mA cm−2 is the most efficient current density and the comparison of different supporting electrolytes (Na2SO4, NaNO3, and NaCl) indicated a higher removal of total organic carbon in NaCl medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Balasankar, T., & Nagarajan, S. (2000). Biodegradation of phenols by a plasmid free Bacillus brevis. Asian Journal of Microbiology, Biotechnology and Environmental Sciences, 2, 155–158.

    CAS  Google Scholar 

  • Beer, H.B. (1972). Electrode and coating therefor. US patent 3632498.

  • Bolton, J. R., Bircher, K. G., Tumas, W., & Tolman, C. A. (2001). Figures-of-merit for the technical development and application of advanced oxidation technologies for both electric and solar-driven systems (IUPAC technical report). Pure and Applied Chemistry, 73, 627–637.

    Article  CAS  Google Scholar 

  • Chitra, S., Sekaran, G., Padmavathi, S., & Gowri, C. (1995). Removal phenolic compounds from wastewater using mutant strain of Pseudomonas pictorum. The Journal of General and Applied Microbiology, 41, 229–237.

    Article  CAS  Google Scholar 

  • Comninellis, C., & Nerine, A. (1995). Anodic oxidation of phenol in the presence of NaCl for wastewater treatment. Journal of Applied Electrochemistry, 25, 23–28.

    Article  CAS  Google Scholar 

  • Comninellis, C., & Pulgarin, C. (1991). Anodic oxidation of phenol for waste water treatment. Journal of Applied Electrochemistry, 21, 703–708.

    Article  CAS  Google Scholar 

  • De Angelis, D. F., Corso, C. R., Bidoia, E. D., Moraes, P. B., Domingos, R. N., & Rocha-Filho, R. C. (1998). Electrolysis of polluting wastes. I—wastewater from a seasoning freeze-drying industry. Química Nova, 21, 20–24.

    Article  Google Scholar 

  • Gattrell, M., & Kirk, D. W. (1993). A study of the oxidation of phenol at platinum and preoxidized platinum surfaces. Journal of the Electrochemical Society, 140, 1534–1540.

    Article  CAS  Google Scholar 

  • Grit, N., Riho, T., Liis, M., Maia, K., Frieder, S., & Hermann, J. H. (2004). Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation. Applied and Environmental Microbiology, 70, 1907–1912.

    Article  Google Scholar 

  • Malpass, G. R. P., & Motheo, A. J. (2001). Galvanostatic oxidation of formaldehyde–methanol solutions on Ti/Ru–0.Ti–3(0).O–7(2) electrodes using a filter-press cell. Journal of Applied Electrochemistry, 31, 1351–1357.

    Article  CAS  Google Scholar 

  • Malpass, G. R. P., & Motheo, A. J. (2003). The galvanostatic oxidation of aldehydes to acids on Ti/Ru0.3Ti0.7O2 electrodes using a filter-press cell. Journal of the Brazilian Chemical Society, 14, 65–70.

    Article  CAS  Google Scholar 

  • Malpass, G. R. P., & Motheo, A. J. (2008). Screening process for activity determination of conductive oxide electrodes for organic oxidation. Journal of the Brazilian Chemical Society, 19, 672–678.

    Article  CAS  Google Scholar 

  • Malpass, G. R. P., Miwa, D. W., Machado, S. A. S., Olivi, P., & Motheo, A. J. (2006a). Oxidation of the pesticide atrazine at DSA (R) electrodes. Journal of Hazardous Materials, 137, 565–572.

    Article  CAS  Google Scholar 

  • Malpass, G. R. P., Neves, R. S., & Motheo, A. J. (2006b). A comparative study of commercial and laboratory-made Ti/Ru0.3Ti0.7O2 DSA® electrodes: “in situ” and “ex situ” surface characterisation and organic oxidation activity. Electrochimica Acta, 52, 936–944.

    Article  CAS  Google Scholar 

  • Malpass, G. R. P., Miwa, D. W., Mortari, D. A., Machado, S. A. S., & Motheo, A. J. (2007a). Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Research, 41, 2969–2977.

    Article  CAS  Google Scholar 

  • Malpass, G. R. P., Miwa, D. W., Machado, S. A. S., & Motheo, A. J. (2007b). Photo-assisted electrochemical oxidation of atrazine on a commercial Ti/Ru0.3Ti0.7O2 DSA electrode. Environmental Science and Technology, 41, 7120–7125.

    Article  CAS  Google Scholar 

  • Malpass, G. R. P., Miwa, D. W., Machado, S. A. S., & Motheo, A. J. (2008). Decolourisation of real textile waste using electrochemical techniques: effect of electrode composition. Journal of Hazardous Materials, 156, 170–177.

    Article  CAS  Google Scholar 

  • Martinez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 35, 1324–1340.

    Article  CAS  Google Scholar 

  • Murphy, P. A., Boegal, W. J., Price, M. K., & Moody, C. D. (1989). A Fenton like reaction to neutralize formaldehyde waste solutions. Environmental Science and Technology, 23, 166–173.

    Article  CAS  Google Scholar 

  • Pelegrino, R. L., Di Iglia, R. A., Sanches, C. G., Avaca, L. A., & Bertazzoli, R. (2002). Comparative study of commercial oxide electrodes performance in electrochemical degradation of organics in aqueous solutions. Journal of the Brazilian Chemical Society, 13, 60–65.

    Article  CAS  Google Scholar 

  • Rajeshwar, K., Ibanez, J.G., & Swain, G. M. (1994). Electrochemistry and the environment. Journal of Applied Electrochemistry, 24, 1077–1091.

    Google Scholar 

  • Rajkumar, D., & Palanivelu, K. (2004a). Electrochemical treatment of industrial wastewater. Journal of Hazardous Materials, B, 13, 123–129.

    Article  Google Scholar 

  • Rajkumar, D., & Palanivelu, K. (2004b). Electrochemistry and the environment. Journal of Applied Electrochemistry, 24, 1077–1091.

    Google Scholar 

  • Savall, A. (1995). Electrochemical treatment of industrial organic effluents. Chimia, 49, 23–27.

    CAS  Google Scholar 

  • Scialdone, O., Randazzo, S., Galia, A., & Silvestri, G. (2009). Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl. Water Research, 43, 2260–2272.

    Article  CAS  Google Scholar 

  • Stephen, T. L. T., Benjamin, Y. P. M., Abdul, M. M., & Joo, H. T. (2005). Comparing activated sludge and aerobic granules as microbial inocula for phenol biodegradation. Applied Microbiology and Biotechnology, 67, 708–713.

    Article  Google Scholar 

  • Tisler, R., & Zagorc-Koncan, J. (1997). Comparative assessment of toxicity of phenol, formaldehyde, and industrial wastewater to aquatic organism. Water, Air, and Soil Pollution, 97, 315–322.

    CAS  Google Scholar 

  • Trasatti, S. (2000). Electrocatalysis: understanding the success of DSA®. Electrochimica Acta, 45, 2377–2385.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank De Nora (Brazil) for DSA samples and the financial support from Brazilian National Council for Scientific and Technological Development (CNPq).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur J. Motheo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fornazari, A.L.T., Malpass, G.R.P., Miwa, D.W. et al. Application of Electrochemical Degradation of Wastewater Composed of Mixtures of Phenol–Formaldehyde. Water Air Soil Pollut 223, 4895–4904 (2012). https://doi.org/10.1007/s11270-012-1245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-012-1245-y

Keywords

Navigation