Skip to main content
Log in

Removal of Bisphenol A from Aqueous Solution by Activated Carbon Derived from Oil Palm Empty Fruit Bunch

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

The potential of the activated carbon prepared from the empty fruit bunch of oil palm wastes to remove bisphenol A (BPA) from aqueous media was investigated. The experiments were performed by varying the contact time, activated carbon dose, initial BPA concentration, and pH of the solution. The Langmuir, Freundlich, and Temkin isotherm models were employed to discuss the adsorption behavior. The equilibrium data were perfectly represented by the Langmuir isotherm with R 2 of 0.9985. The maximum monolayer adsorption capacity of the activated carbon was found to be 41.98 mg/g. Kinetic studies indicated that the adsorption process followed the pseudo-second-order kinetic with a rate constant of 0.3 × 10−3/min. The activated carbon was characterized by means of Fourier transform infrared spectrometry, Brunauer–Emmett–Teller, and field emission scanning electron microscopy analyses. The results of the present study indicate that the activated carbon prepared from the empty fruit bunch is a promising candidate as a low-cost bio-adsorbent for the removal of BPA from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdullah, N., Sulaiman, F., & Gerhauser, H. (2011). Characterisation of oil palm empty fruit bunches for fuel application. Journal of Physical Science, 22, 1–24.

    CAS  Google Scholar 

  • Adinata, D., Daud, W. M. A. W., & Aroua, M. K. (2007). Preparation and characterization of activated carbon from palm shell by chemical activation with K2CO3. Bioresource Technology, 98, 145–149.

    Article  CAS  Google Scholar 

  • Al-Qodah, Z., & Shawabkah, R. (2009). Production and characterization of granular activated carbon from activated sludge. Brazilian Journal of Chemical Engineering, 26, 127–136.

    Article  CAS  Google Scholar 

  • Arnold, S. M., Clark, K. E., Staples, C. A., Klecka, G. M., Dimond, S. S., Caspers, N., & Hentges, S. G. (2013). Relevance of drinking water as a source of human exposure to bisphenol A. Journal of Exposure Science and Environmental Epidemiology, 23, 137.

    Article  CAS  Google Scholar 

  • Bautista-Toledo, I., Ferro-García, M. A., Rivera-Utrilla, J., Moreno-Castilla, C., & Vegas-Fernández, F. J. (2005). Bisphenol A removal from water by activated carbon. Effects of carbon characteristics and solution chemistry. Environmental Science & Technology, 39, 6246–6250.

    Article  CAS  Google Scholar 

  • Bouchelta, C., Medjram, M. S., Bertrand, O., & Bellat, J. P. (2008). Preparation and characterization of activated carbon from date stones by physical activation with steam. Journal of Analytical and Applied Pyrolysis, 82, 70–77.

    Article  CAS  Google Scholar 

  • Cazetta, A. L., Vargas, A. M., Nogami, E. M., Kunita, M. H., Guilherme, M. R., Martins, A. C., Silva, T. L., Moraes, J. C., & Almeida, V. C. (2011). NaOH-activated carbon of high surface area produced from coconut shell: kinetics and equilibrium studies from the methylene blue adsorption. Chemical Engineering Journal, 174, 117–125.

  • Chandra, T. C., Mirna, M. M., Sudaryanto, Y., & Ismadji, S. (2007). Adsorption of basic dye onto activated carbon prepared from durian shell: studies of adsorption equilibrium and kinetics. Chemical Engineering Journal, 127, 121–129.

    Article  CAS  Google Scholar 

  • Choi, K. J., Kim, S. G., Kim, C. W., & Kim, S. H. (2005). Effects of activated carbon types and service life on removal of endocrine disrupting chemicals: amitrol, nonylphenol, and bisphenol-A. Chemosphere, 58, 1535–1545.

    Article  CAS  Google Scholar 

  • Demiral, H., Demiral, İ., Tümsek, F., & Karabacakoğlu, B. (2008). Adsorption of chromium(VI) from aqueous solution by activated carbon derived from olive bagasse and applicability of different adsorption models. Chemical Engineering Journal, 144, 188–196.

    Article  CAS  Google Scholar 

  • Doğan, M., Alkan, M., Türkyilmaz, A., & Özdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, 109, 141–148.

    Article  Google Scholar 

  • Doğan, M., Abak, H., & Alkan, M. (2008). Biosorption of methylene blue from aqueous solutions by hazelnut shells: equilibrium, parameters and isotherms. Water, Air, and Soil Pollution, 192, 141–153.

    Article  Google Scholar 

  • Erler, C., & Novak, J. (2010). Bisphenol A exposure: human risk and health policy. Journal of Pediatric Nursing, 25, 400–407.

    Article  Google Scholar 

  • Fan, X., Tu, B., Ma, H., & Wang, X. (2011). Adsorption behavior of environmental hormone Bisphenol A onto mesoporous silicon dioxide. Bulletin of the Korean Chemical Society, 32, 1–5.

    Article  CAS  Google Scholar 

  • Gerçel, Ö., & Gerçel, H. F. (2007). Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chemical Engineering Journal, 132, 289–297.

    Article  Google Scholar 

  • Ghaedi, M., Karimi, F., Barazesh, B., Sahraei, R., & Daneshfar, A. (2013). Removal of Reactive Orange 12 from aqueous solutions by adsorption on tin sulfide nanoparticle loaded on activated carbon. Journal of Industrial and Engineering Chemistry, 19, 756–763.

    Article  CAS  Google Scholar 

  • Gong, R., Liang, J., Chen, J., & Huang, F. (2009). Removal of bisphenol A from aqueous solution by hydrophobic sorption of hemimicelles. International Journal of Environmental Science & Technology., 6, 539–544.

    Article  CAS  Google Scholar 

  • Hadibarata, T., & Kristanti, R. A. (2013). Biodegradation and metabolite transformation of pyrene by basidiomycetes fungal isolate Armillaria sp. F022. Bioprocess and Biosystem Engineering, 36, 461–468.

    Article  CAS  Google Scholar 

  • Hadibarata, T., Khudhair, A. B., & Salim, M. R. (2012). Breakdown products in the metabolic pathway of anthracene degradation by a ligninolytic fungus Polyporus sp. S133. Water, Air, & Soil Pollution, 223, 2201–2208.

    Article  CAS  Google Scholar 

  • Hameed, B. H., & Rahman, A. A. (2008). Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. Journal of Hazardous Materials, 160, 576–581.

    Article  CAS  Google Scholar 

  • Han, X., Wang, W., & Ma, X. (2011). Adsorption characteristics of methylene blue onto low cost biomass material lotus leaf. Chemical Engineering Journal, 171, 1–8.

    Article  CAS  Google Scholar 

  • Hayashi, J., Kazehaya, A., Muroyama, K., & Watkinson, A. P. (2000). Preparation of activated carbon from lignin by chemical activation. Carbon, 38, 1873–1878.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Ioannidou, O., & Zabaniotou, A. (2007). Agricultural residues as precursors for activated carbon production—a review. Renewable and Sustainable Energy Reviews, 11, 1966–2005.

    Article  CAS  Google Scholar 

  • Kang, J. H., Kondo, F., & Katayama, Y. (2006). Human exposure to bisphenol A. Toxicology, 226, 79–89.

    Article  CAS  Google Scholar 

  • Kılıç, M., Apaydın-Varol, E., & Pütün, A. E. (2012). Preparation and surface characterization of activated carbons from Euphorbia rigida by chemical activation with ZnCl2, K2CO3, NaOH and H3PO4. Applied Surface Science, 261, 247–254.

    Article  Google Scholar 

  • Senthil Kumar, P., Ramalingam, S., Senthamarai, C., Niranjanaa, M., Vijayalakshmi, P., & Sivanesan, S. (2010). Adsorption of dye from aqueous solution by cashew nut shell: studies on equilibrium isotherm, kinetics and thermodynamics of interactions. Desalination, 261, 52–60.

    Article  CAS  Google Scholar 

  • Nakanishi, A., Tamai, M., Kawasaki, N., Nakamura, T., & Tanada, S. (2002). Adsorption characteristics of bisphenol A onto carbonaceous materials produced from wood chips as organic waste. Journal of Colloid and Interface Science, 252, 393–396.

    Article  CAS  Google Scholar 

  • Oehlmann, J., Oetken, M., & Schulte-Oehlmann, U. (2008). A critical evaluation of the environmental risk assessment for plasticizers in the freshwater environment in Europe, with special emphasis on bisphenol A and endocrine disruption. Environmental Research, 108, 140–149.

    Article  CAS  Google Scholar 

  • Piarpuzán, D., Quintero, J. A., & Cardona, C. A. (2011). Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass and Bioenergy, 35, 1130–1137.

    Article  Google Scholar 

  • Rebitanim, N. Z., Ghani, W. A. W. K., Mahmoud, D. K., Rebitanim, N. A., & Salleh, M. A. M. (2012). Adsorption capacity of raw empty fruit bunch biomass onto methylene blue dye in aqueous solution. Journal of Purity, Utility Reaction and Environment., 1, 45–60.

    CAS  Google Scholar 

  • Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. England: Wiley.

    Google Scholar 

  • Takekuma, M., Saito, K., Ogawa, M., Matsumoto, R., & Kobayashi, S. (2004). Levels of PCDDs, PCDFs, and Co-PCBs in human milk in Saitama, Japan, and epidemiological research. Chemosphere, 54, 127–135.

    Article  CAS  Google Scholar 

  • Tan, I. A. W., Ahmad, A. L., & Hameed, B. H. (2008). Adsorption of basic dye on high-surface-area activated carbon prepared from coconut husk: equilibrium, kinetic and thermodynamic studies. Journal of Hazardous Materials, 154, 337–346.

    Article  CAS  Google Scholar 

  • Tsai, W. T., Lai, C. W., & Su, T. Y. (2006). Adsorption of bisphenol-A from aqueous solution onto minerals and carbon adsorbents. Journal of Hazardous Materials, 134, 169–175.

    Article  CAS  Google Scholar 

  • Xu, J., Wang, L., & Zhu, Y. (2012). Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir, 28, 8418–8425.

    Article  CAS  Google Scholar 

  • Zhou, Y., Chen, L., Lu, P., Tang, X., & Lu, J. (2011). Removal of bisphenol A from aqueous solution using modified fibric peat as a novel biosorbent. Separation and Purification Technology, 81, 184–190.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Ministry of Education Malaysia for providing LRGS Grant on Water Security entitled Protection of Drinking Water: Source Abstraction and Treatment (203/PKT/6720006)(R.J130000.7809.4L810).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony Hadibarata.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wirasnita, R., Hadibarata, T., Yusoff, A.R.M. et al. Removal of Bisphenol A from Aqueous Solution by Activated Carbon Derived from Oil Palm Empty Fruit Bunch. Water Air Soil Pollut 225, 2148 (2014). https://doi.org/10.1007/s11270-014-2148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-014-2148-x

Keywords

Navigation