Skip to main content
Log in

Biosorption of Methylene Blue from Aqueous Solutions by Hazelnut Shells: Equilibrium, Parameters and Isotherms

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

This paper presents a study on the batch adsorption of a basic dye, methylene blue (MB), from aqueous solution onto ground hazelnut shell in order to explore its potential use as a low-cost adsorbent for wastewater dye removal. A contact time of 24 h was required to reach equilibrium. Batch adsorption studies were carried out by varying initial dye concentration, initial pH value (3–9), ionic strength (0.0–0.1 mol L−1), particle size (0–200 μm) and temperature (25–55°C). The extent of the MB removal increased with increasing in the solution pH, ionic strength and temperature but decreased with increase in the particle size. The equilibrium data were analysed using the Langmuir and Freundlich isotherms. The characteristic parameters for each isotherm were determined. By considering the experimental results and adsorption models applied in this study, it can be concluded that equilibrium data were represented well by Langmuir isotherm equation. The maximum adsorption capacities for MB were 2.14 × 10−4, 2.17 × 10−4, 2.20 × 10−4 and 2.31 × 10−4 mol g−1 at temperature of 25, 35, 45 and 55°C, respectively. Adsorption heat revealed that the adsorption of MB is endothermic in nature. The results indicated that the MB strongly interacts with the hazelnut shell powder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

q m :

Monolayer capacity of the adsorbent, mol g−1

K :

Adsorption constant, L mol−1

C e :

Equilibrium dye concentration in solution, mol L−1

q e :

Equilibrium dye concentration on adsorbent, mol g−1

K F :

Freundlich constant, mol g−1

n :

Freundlich isotherm exponent

T :

Temperature, K

I :

Ionic strength, mol L−1

W :

Mass of adsorbent, g

V :

Volume of aqueous solution to be treated, L

C 0 :

Initial dye concentration in aqueous solution, mol L−1

R 2 :

Regression coefficient

PS:

Particle size

References

  • Aksu, Z., & Tezer, S. (2001). Equilibrium and kinetic modelling of biosorption of remazol black B by Rhizopus arrhizus in a batch system: Effect of temperature. Process Biochemistry, 36, 431–439.

    Article  Google Scholar 

  • Alkan, M., Çelikçapa, S., Demirbaş, Ö., & Doğan, M. (2005). Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes and Pigments, 65, 251–259.

    Article  CAS  Google Scholar 

  • Alkan, M., Demirbaş, Ö., Çelikçapa, S., & Doğan, M. (2004a). Sorption of acid red 57 from aqueous solution onto sepiolite. Journal of Hazardous Materials, B116, 135–145.

    Article  CAS  Google Scholar 

  • Alkan, M., Demirbaş, Ö., & Doğan, M. (2004b). Removal of acid yellow 49 from aqueous solution by adsorption. Fresenius Environmental Bulletin, 13(11a), 1112–1121.

    CAS  Google Scholar 

  • Alkan, M., & Doğan, M. (2003) Adsorption kinetics of Victoria blue onto perlite. Fresenius Environmental Bulletin, 12(5), 418–425.

    CAS  Google Scholar 

  • Allen, S. J., & Koumanova, B. (2005). Decolourisation of water/wastewater using adsorption (Review). J Univ Chem Technol Metall, 40, 175–192.

    CAS  Google Scholar 

  • An, H., Yi, Q., Xiasheng, G., & Tang, W. Z. (1996). Biological treatment of dye wastewaters using an anaerobiceoxic system. Chemosphere, 33, 2533–2542.

    Article  CAS  Google Scholar 

  • Annadurai, G. (2002). Adsorption of basic dye on strongly chelating polymer: batch kinetics studies. Iranian PolynterJournal, 11(4), 237–244.

    CAS  Google Scholar 

  • Annadurai, G., Juang, R. S., & Lee, D. J. (2002). Use of cellulose-based wastes for adsorption of dyes from aqueous solutions. Journal of Hazardous Materials, B92, 263–274.

    Article  Google Scholar 

  • Aslıhan, G., Savas, S., Sedat, B., & Ali, M. M. (2005). Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions. Journal of Colloid and Interface Science, 286, 53–60.

    Article  CAS  Google Scholar 

  • Banat, I. M., Nigam, P., Singh, D., & Marchant, R. (1996). Microbial decolorization of textile-dye-containing effluents: A review. Bioresource Technology, 58, 217–227.

    Article  CAS  Google Scholar 

  • Banerjee, S., & Dastidar, M. G. (2005). Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics. Bioresource Technology, 96(17), 1919–1928.

    Article  CAS  Google Scholar 

  • Batzias, F. A., & Sidiras, D. K. (2004). Dye adsorption by calcium-chloride treated beech sawdust in batch and fixed-bed systems. Journal of Hazardous Materials, B114, 167–174.

    Article  CAS  Google Scholar 

  • Bhattacharyya, K. G., & Sharma, A. (2005). Kinetics and thermodynamics of methylene blue adsorption on Neem (Azadirachta indica) leaf powder. Dyes and Pigments, 65, 51–59.

    Article  CAS  Google Scholar 

  • Bulut, Y., & Aydın, H. (2006). A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination, 194, 259–267.

    Article  CAS  Google Scholar 

  • Crini, G. (2006). Non-conventional low-cost adsorbents for dye removal: A review. Bioresource Technology, 97, 1061–1085.

    Article  CAS  Google Scholar 

  • Demirbaş, O., Alkan, M., & Dogan, M. (2002). The removal of Victoria blue from aqueous solution by adsorption on a low-cost material. Adsorption, 8, 341–349.

    Article  Google Scholar 

  • Doğan, M., & Alkan, M. (2003a). Adsorption kinetics of methyl violet onto perlite. Chemosphere, 50, 517–528.

    Article  Google Scholar 

  • Dogan, M., & Alkan, M. (2003b). Removal of methyl violet from aqueous solutions by perlite. Journal of Colloid and Interface Science, 267, 32–41.

    Article  CAS  Google Scholar 

  • Doğan, M., Alkan, M., & Onganer, Y. (2000). Adsorption of methylene blue on perlite from aqueous solutions. Water, Air and Soil Pollution, 120, 229–248.

    Article  Google Scholar 

  • Doğan, M., Alkan, M., Türkyılmaz, A., & Özdemir, Y. (2004). Kinetics and mechanism of removal of methylene blue by adsorption onto perlite. Journal of Hazardous Materials, B109, 141–148.

    Article  CAS  Google Scholar 

  • Doğan, M., Özdemir, Y., & Alkan, M. (2007). Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes and Pigments, 75(3), 701–713.

    Article  CAS  Google Scholar 

  • Ferrero, F. (2007). Dye removal by low cost adsorbents: Hazelnut shells in comparison with wood sawdust. Journal of Hazardous Materials, 142, 144–152.

    Article  CAS  Google Scholar 

  • Feryal, A. (2005). Adsorption of basic dyes from aqueous solution onto pumice powder. Journal of Colloid and Interface Science, 286, 455–458.

    Article  CAS  Google Scholar 

  • Garg, V. K., Amita, M., Kumar, R., & Gupta, R. (2004). Basic dye (methylene blue) removal from simulated wastewater by adsorption using Indian Rosewood sawdust: A timber industry waste. Dyes and Pigments, 63, 243–250.

    Article  CAS  Google Scholar 

  • German-Heins, J., & Flury, M. (2000). Sorption of brilliant blue FCF in soils as affected by pH and ionic strength. Geoderma, 97, 87–101.

    Article  CAS  Google Scholar 

  • Ghoreishi, S. M., & Haghighi, R. (2003). Chemical catalytic reaction and biological oxidation for treatment of non-biodegradable textile effluent. Chemical Engineering Journal, 95, 163–169.

    Article  CAS  Google Scholar 

  • Ghosh, D., & Bhattacharyya, K. G. (2002). Adsorption of methylene blue on kaolinite. Applied Clay Science, 20, 295–300.

    Article  CAS  Google Scholar 

  • Gregory, A. R., Eliot, S., & Kluge, P. (1991). Ames testing of direct black 3B parallel carcinogenecity. Journal of Applied Toxicology, 1, 308–313.

    Article  Google Scholar 

  • Guo, Y., Yang, S., Fu, W., Qi, J., Li, R., Wang, Z., et al. (2003). Adsorption of malachite green on micro- and mesoporous rice husk-based active carbon. Dyes and Pigments, 56, 219–229.

    Article  CAS  Google Scholar 

  • Gupta, V. K., Suhas, A. I., & Saini, V. K. (2004). Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Industrial and Engineering Chemistry Research, 43, 1740–1747.

    Article  CAS  Google Scholar 

  • Gücek, A., Şener, S., Bilgen, S., & Mazmancı, M. A. (2005). Adsorption and kinetic studies of cationic and anionic dyes on pyrophyllite from aqueous solutions. Journal of Colloid and Interface Science, 286, 53–60.

    Article  CAS  Google Scholar 

  • Hall, K. R., Eagleton, L. C., Acrivos, A., & Vermeulen, T. (1966). Pore and solid diffusion kinetics in fixed bed adsorption under constant conditions. Industrial & Engineering Chemistry Fundamentals, 5, 212–219.

    Article  CAS  Google Scholar 

  • Hamdaoui, O. (2006). Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick. Journal of Hazardous Materials, B135, 264–273.

    Article  CAS  Google Scholar 

  • Harris, O. P., & Ramelow, G. J. (1990). Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environmental Science and Technology, 24(2), 220–224.

    Article  CAS  Google Scholar 

  • Janos, P. (2003). Sorption of basic dyes onto iron humate. Environmental Science and Technology, 37, 5792–5798.

    Article  CAS  Google Scholar 

  • Kapoor, A., Viraraghavan, T., & Cullimore, D. R. (1999). Removal of heavy metals using the fungus Aspergillus niger. Bioresource Technology, 70(1), 95–104.

    Article  CAS  Google Scholar 

  • Kavitha, D., & Namasivayam, C. (2007). Experimental and kinetic studies on methylene blue adsorption by coir pith carbon. Bioresource Technology, 98(1), 14–21.

    Article  CAS  Google Scholar 

  • Legrouri, K., Khouyab, E., Ezzinea, M., Hannachea, H., Denoyelc, R., Pallierd, R., et al. (2005). Production of activated carbon from a new precursor molasses by activation with sulphuric acid. Journal of Hazardous Materials, B118, 259–263.

    Article  CAS  Google Scholar 

  • Liakou, S., Pavlou, S., & Lyberatos, G. (1997). Ozonation of azo dyes. Water Science and Technology, 35, 279–286.

    Article  CAS  Google Scholar 

  • Lorenc-Grabowska, E., & Gryglewicz, G. (2007). Adsorption characteristics of Congo Red on coal-based mesoporous activated carbon. Dyes and Pigments, 74, 34–40.

    Article  CAS  Google Scholar 

  • Maurya, N. S., Mittal, A. K., Cornel, P., & Rother, E. (2006). Biosorption of dyes using dead macro fungi: Effect of dye structure, ionic strength and pH. Bioresource Technology, 97, 512–521.

    Article  CAS  Google Scholar 

  • McKay, G., Otterburn, M. S., & Aga, D. A. (1985). Fullers earth and fired clay as adsorbent for dye stuffs, equilibrium and rate constants. Water, Air, and Soil Pollution, 24, 307–322.

    Article  CAS  Google Scholar 

  • McKay, G., Otterburn, M. S., & Sweeney, A. G. (1980). Water Research, 14, 21–27.

    Article  CAS  Google Scholar 

  • McMullan, G., Meehan, C., Conneely, A., Kirby, N., Robinson, T., Nigam, P., et al. (2001). Microbial decolourisation and degradation of textile dyes. Applied Microbiology and Biotechnology, 56, 81–87.

    Article  CAS  Google Scholar 

  • Mittal, A. (2006). Adsorption kinetics of removal of a toxic dye, Malachite Green, from wastewater by using hen feathers. Journal of Hazardous Materials, B33, 196–202.

    Article  CAS  Google Scholar 

  • Namasivayam, C., Kumar, M. D., & Begum, R. A. (2001). ‘Waste’ coir pith—a potential biomass for the treatment of dyeing wastewaters. Biomater. Bioenerg., 21, 477–483.

    Article  CAS  Google Scholar 

  • Narine, D. R., & Guy, R. D. (1981). Interactions of some large organic cations with bentonite in dilute aqueous systems. Clays Clay Miner, 29, 205–212.

    Article  CAS  Google Scholar 

  • Nassem, R., & Tahir, S. (2001). Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent. Water Research, 35, 3982–3986.

    Article  Google Scholar 

  • Ozacar, M., & Sengil, I. A. (2005). Adsorption of metal complex dyes from aqueous solutions by pine sawdust. Bioresource Technology, 96, 791–795.

    Article  CAS  Google Scholar 

  • Özdemir, Y., Doğan, M., & Alkan, M. (2006). Adsorption of cationic dyes from aqueous solutions by sepiolite. Microporous and Mesoporous Materials, 96(1–3), 419–427.

    Article  CAS  Google Scholar 

  • Pavel, J., Pavel, S., Milena, R., & Sylvie, G. (2005). Sorption of basic and acid dyes from aqueous solutions onto oxihumolite. Chemosphere, 59, 881–886.

    Article  CAS  Google Scholar 

  • Pearce, C. I., Lloyd, J. R., & Guthrie, J. T. (2003). The removal of colour from textile wastewater using whole bacterial cells: A review. Dyes and Pigments, 58, 179–196.

    Article  CAS  Google Scholar 

  • Ravi Kumar, M. N. V., Sridhari, T. R., Bhavani, K. D., & Dutta, P. K. (1998). Trends in color removal from textile mill effluents. Colorage, 40, 25–34.

    Google Scholar 

  • Renmin, G., Yingzhi, S., Jian, C., Huijun, L., & Chao, Y. (2005). Effect of chemical modification on dye adsorption capacity of peanut hull. Dyes and Pigments, 67, 175–181.

    Article  CAS  Google Scholar 

  • Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.

    Article  CAS  Google Scholar 

  • Sampa, C., & Binay, K. D. (2005). On the adsorption and diffusion of methylene blue in glass fibers. Journal of Colloid and Interface Science, 286, 807–811.

    Article  CAS  Google Scholar 

  • Sanghi, R., & Bhattacharya, B. (2002). Review on decolorisation of aqueous dye solutions by low cost adsorbents. Coloration Technology, 118, 256–269.

    Article  CAS  Google Scholar 

  • Sarasa, J., Roche, M. P., Ormad, M. P., Gimeno, E., Puig, A., & Ovelleiro, J. L. (1998). Treatment of a wastewater resulting from dyes manufacturing with ozone and chemical coagulation. Water Research, 32, 2721–2727.

    Article  CAS  Google Scholar 

  • Schiewer, S., & Volesky, B. (1995). Modelling of proton–metal ion exchange in biosorption. Environmental Science and Technology, 29(12), 3049–3058.

    Article  CAS  Google Scholar 

  • Shaobin, W., Zhua, Z. H., Anthony, C., Haghseresht, F., & Luc, G. Q. (2005). The physical and surface chemical characteristics of activated carbons and the adsorption of methylene blue from wastewater. Journal of Colloid and Interface Science, 284, 440–446.

    Article  CAS  Google Scholar 

  • Singh, K. P., Mohan, D., Sinha, S., Tondon, G. S., & Gosh, D. (2003). Color removal from wastewater using low-cost activated carbon derived from agricultural waste material. Industrial and Engineering Chemistry Research, 42, 1965–1976.

    Article  CAS  Google Scholar 

  • Singh, D. K., & Srivastava, B. (1999). Removal of basic dyes from aqueous solutions by chemically treated Psidium Guyava leaves. Indian Journal of Environmental Health, 41, 333–345.

    CAS  Google Scholar 

  • Summers, R. S., & Roberts, P. V. (1988). GAC adsorption of humic substances II. Size exclusion and electrostatic interactions. Journal of Colloid and Interface Science, 122, 382–397.

    Article  CAS  Google Scholar 

  • Sun, Q., & Yang, L. (2003). The adsorption of basic dyes from aqueous solution on modified peat-resin particle. Water Research, 37, 1535–1544.

    Article  CAS  Google Scholar 

  • Tokiwa, F. (1983). Surfactants pp. 17–25. Tokyo, Japan: Kao Co.

    Google Scholar 

  • Tsai, W. T., Yang, J. M., Lai, C. W., Cheng, Y. H., Lin, C. C., & Yeh, C. W. (2006). Characterization and adsorption properties of eggshells and eggshell membrane. Bioresource Technology, 97(3), 488–493.

    Article  CAS  Google Scholar 

  • Vadivelan, V., & Vasanth Kumar, K. (2005). Equilibrium, kinetics, mechanism, and process design for the sorption of methylene blue onto rice husk. Journal of Colloid and Interface Science, 286, 90–100.

    Article  CAS  Google Scholar 

  • Wang, S., Boyjoo, Y., & Choueib, A. (2005). A comparative study of dye removal using fly ash treated by different methods. Chemosphere, 60(10), 1401–1407.

    Article  CAS  Google Scholar 

  • Weng, C.-H., & Pan, Y.-F. (2006). Adsorption characteristics of methylene blue from aqueous solution by sludge ash. Colloids and Surfaces A: Physicochem. Eng. Aspects, 274, 154–162.

    Article  CAS  Google Scholar 

  • Wu, F. C., Tseng, R.-L., & Hu, C.-C. (2005). Comparisons of pore properties and adsorption performance of KOH-activated and steam-activated carbons. Microporous and Mesoporous Materials, 80, 95–106.

    Article  CAS  Google Scholar 

  • You, L., Wu, Z., Kim, T., & Lee, K. (2006). Kinetics and thermodynamics of bromophenol blue adsorption by a mesoporous hybrid gel derived from tetraethoxysilane and bis(trimethoxysilyl)hexane. Journal of Colloid and Interface Science, 300, 526–535.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet Doğan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doğan, M., Abak, H. & Alkan, M. Biosorption of Methylene Blue from Aqueous Solutions by Hazelnut Shells: Equilibrium, Parameters and Isotherms. Water Air Soil Pollut 192, 141–153 (2008). https://doi.org/10.1007/s11270-008-9641-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9641-z

Keywords

Navigation