Skip to main content
Log in

Fluoride Removal from Aqueous Solutions by a Carbonaceous Material from Pyrolysis of Sewage Sludge

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Contact time, pH, fluoride concentration, and sorbent dose effects on the removal of fluoride ions by a carbonaceous material obtained from pyrolysis of sewage sludge (CM) were evaluated. Equilibrium was reached after 18 h of contact time and the maximum sorption was found at pHeq = 7.06 ± 0.08, which corresponds to the zero charge point of the CM. The highest efficiency in the sorption system for fluoride removal (2.84 ± 0.03 mg F\( g_{{CM}}^{{ - 1}} \)) was found with 0.4 gCM L−1 and with 20 gCM L−1, 82.2 ± 0.5% of fluoride was removed. The kinetic data of the process could be fitted to the pseudosecond order and the intraparticle mass transfer diffusion models, whereas isotherm to the Langmuir–Freundlich equation. These results indicate that the mechanism is chemisorption on a heterogeneous material. Fluoride ions were best partially desorbed using a bicarbonate ions solution and the material was partially regenerated by using a solution of HCl (pH = 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badillo-Almaraz, V. E., Flores, J. A., Arriola, H., López, F. A., & Ruiz Ramírez, L. (2007). Elimination of fluoride ions in water for human consumption using hydroxyapatite as an sorbent. Journal of Radioanalytical and Nuclear Chemistry, 271, 741–744.

    Article  CAS  Google Scholar 

  • Biswas, K., Saha, S. K., & Ghosh, U. Ch. (2007). Adsorption of fluoride from aqueous solution by a synthetic iron(III)–aluminium(III) mixed oxide. Industrial and Engineering Chemistry Research, 46, 5346–5356.

    Article  CAS  Google Scholar 

  • Coplan, M. J., Patch, S. C., Masters, R. D., & Bachman, M. S. (2007). Confirmation of and explanations for elevated blood lead and other disorders in children exposed to water disinfection and fluoridation chemicals. NeuroToxicology, 28, 1032–1042.

    Article  CAS  Google Scholar 

  • Das, D. P., Das, J., & Parida, K. (2003). Physicochemical characterization and sorption behaviour of calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride from aqueous solution. Journal of Colloid and Interface Science, 261, 213–220.

    Article  CAS  Google Scholar 

  • Fan, X., Parker, D. J., & Smith, M. D. (2003). Adsorption kinetics of fluoride on low cost materials. Water Research, 37, 4929–4937.

    Article  CAS  Google Scholar 

  • Gao, S., Cui, J., & Wei, Z. (2009). Study on the fluoride sorption of various apatite materials in aqueous solution. Journal of Fluorine Chemistry, 130, 1035–1041.

    Article  CAS  Google Scholar 

  • Gao, S., Sun, R., Wei, Z., Zhao, H., Li, H., & Hu, F. (2009). Size-dependent defluoridation properties of synthetic hydroxyapatite. Journal of Fluorine Chemistry, 130, 550–556.

    Article  CAS  Google Scholar 

  • Ghorai, S., & Pant, K. K. (2005). Equilibrium, kinetics, and breakthrough studies for adsorption of fluoride on activated alumina. Separation and Purification Technology, 42, 265–271.

    Article  CAS  Google Scholar 

  • Gutiérrez-Segura, E., Solache-Ríos, M., & Colín-Cruz, A. (2009). Sorption of indigo carmine by a Fe-zeolitic tuff and carbonaceous material from pyrolyzed sewage sludge. Journal of Hazardous Materials, 170, 1227–1235.

    Article  Google Scholar 

  • Hammari, L. E. L., Laghzizil, A., Barboux, P., Lahlil, K., & Saoiabi, A. (2004). Retention of fluoride ions from aqueous solution using porous hydroxyapatite: Structure and conduction properties. Journal of Hazardous Materials, 114, 41–44.

    Article  CAS  Google Scholar 

  • Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.

    Article  CAS  Google Scholar 

  • Inguanzo, M., Menéndez, J. A., Fuente, E., & Arnold, R. G. (2001). Reactivity of pyrolyzed sewage sludge in air and CO2. Journal of Analytical and Applied Pyrolysis, 58, 943–954.

    Article  Google Scholar 

  • Jain, S., & Jayaram, R. V. (2009). Removal of fluoride from contaminated drinking water using unmodified and aluminium hydroxide impregnated blue lime stone waste. Separation Science and Technology, 44, 1436–1451.

    Article  CAS  Google Scholar 

  • Jiménez-Núñez, M. L., Olguín, M. T., & Solache-Ríos, M. (2007). Fluoride removal from aqueous solutions by magnesium, nickel and cobalt calcined hydrotalcite-like compounds. Separation Science and Technology, 42, 3623–3639.

    Article  Google Scholar 

  • Jiménez-Reyes, M., & Solache-Ríos, M. (2010). Sorption behaviour of fluoride ions from aqueous solutions by hydroxyapatite. Journal of Hazardous Materials, 180, 297–302.

    Article  Google Scholar 

  • Jiménez-Reyes, M., Tenorio, D., Esparza-López, J. R., Cruz-Jiménez, R. L., Mandujano, C., & Elizalde, S. (2001). Neutron activation analysis of obsidian from quarries of the Central Quaternary Trans-Mexican Volcanic Axis. Journal of Radioanalytical and Nuclear Chemistry, 250, 465–471.

    Article  Google Scholar 

  • Karthikeyan, G., & Siva Ilango, S. (2007). Fluoride sorption using morringa indica-based activated carbon. Iranian Journal of Environmental Health Science Engineering, 4, 21–28.

    CAS  Google Scholar 

  • Kosmulski, M. (2011). The pH-dependent surface charging and points of zero charge, V. Update. Journal of Colloid and Interface Science, 353, 1–15.

    Article  CAS  Google Scholar 

  • Lv, L., He, J., Wey, M., & Duan, X. (2006). Kinetic studies on fluoride removal by calcined layered double hydroxides. Industrial and Engineering Chemistry Research, 45, 8623–8628.

    Article  CAS  Google Scholar 

  • Maliyekkal, S. H., Sharma, A. K., & Philip, L. (2006). Manganese-oxide-coated alumina: A promising sorbent for defluoridation of water. Water Research, 40, 3497–3506.

    Article  CAS  Google Scholar 

  • Medellín-Castillo, N. A., Leyva-Ramos, R., Ocampo-Pérez, R., García de la Cruz, R. F., Aragón Piña, A., Martínez-Rosales, J. M., et al. (2007). Adsorption of fluoride from water solution on bone char. Industrial and Engineering Chemistry Research, 46, 9205–9212.

    Article  Google Scholar 

  • Nigussie, W., Zewge, F., & Chandravanshi, B. S. (2007). Removal of excess fluoride from water using residue from alum manufacturing process. Journal of Hazardous Materials, 147, 954–963.

    Article  CAS  Google Scholar 

  • Norma Oficial Mexicana NOM-201-SSA1-2002, Productos y servicios. Agua y hielo para consumo humano, envasados y a granel. Especificaciones sanitarias (2002).

  • Puigdomenech, I. (1999). Program MEDUSA (Make Equilibrium Diagrams Using Sophisticated Algorithms) http://www.kemi.kth.se/medusa/.

  • Sarkar, M., Banerjee, A., & Pramanick, P. P. (2006). Kinetics and mechanism of fluoride removal using laterite. Industrial and Engineering Chemistry Research, 45, 5920–5927.

    Article  CAS  Google Scholar 

  • Sinha, S., Pandey, K., Mohan, D., & Singh, K. P. (2003). Removal of fluoride from aqueous solutions by Eichhornia crassipes biomass and its carbonated form. Industrial and Engineering Chemistry Research, 42, 6911–6918.

    Article  CAS  Google Scholar 

  • Sundaram, C. S., Viswanathan, N., & Meenakshi, S. (2008). Defluoridation chemistry of synthetic hydroxyapatite at nano scale: Equilibrium and kinetic studies. Journal of Hazardous Materials, 155, 206–215.

    Article  CAS  Google Scholar 

  • Sundaram, C. S., Viswanathan, N., & Meenakshi, S. (2009). Fluoride sorption by nanohydroxyapatite/chitin composite. Journal of Hazardous Materials, 172, 147–151.

    Article  Google Scholar 

  • Torres-Pérez, J., Solache-Ríos, M., & Colín-Cruz, A. (2008). Sorption and desorption of dye remazol yellow onto a Mexican surfactant-modified clinoptilolite-rich tuff and a carbonaceous material from pyrolysis of sewage sludge. Water, Air, and Soil Pollution, 187, 303–313.

    Article  Google Scholar 

  • Web page of the de la U.S. Environmental Protection Agency (September 2011): http://water.epa.gov/drink/contaminants/basicinformation/fluoride.cfm.

  • WHO/SDE/WSH/03.04/96 (2004). Fluoride in drinking water background document for development of WHO Guidelines for drinking-water quality World Health Organization.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Solache-Ríos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Márquez-Mendoza, S., Jiménez-Reyes, M., Solache-Ríos, M. et al. Fluoride Removal from Aqueous Solutions by a Carbonaceous Material from Pyrolysis of Sewage Sludge. Water Air Soil Pollut 223, 1959–1971 (2012). https://doi.org/10.1007/s11270-011-0997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0997-0

Keywords

Navigation