Skip to main content
Log in

Kinetic and equilibrium studies of fluoride adsorption by a carbonaceous material from pyrolysis of waste sludge

  • Physical Chemistry of Water Treatment Processes
  • Published:
Journal of Water Chemistry and Technology Aims and scope Submit manuscript

Abstract

The efficiency of the adsorption for fluoride by sludge from the treatment of starch industry wastewater was investigated. Batch experiments were conducted in order to determine the parameters that affect the adsorption process. The activation for waste sludge and specific surface area and porosity effects in enhancing the pyrolysis conditions were determined. The adsorption parameters of initial fluoride concentration, pH and adsorbent dosage were investigated with carbonaceous material. As a result of pyrolysis of samples treated with ZnCl2 1196 m2/g, the specific surface area was reached. Correlation coefficient of 0.99 and 12.75 mg/g adsorption capacity and adsorption isotherm model were revealed as convenient. Experimental results show that the adsorption of fluoride waste sludge will be effective in many ways in which the adsorbent is applied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, J., Xie, S., and Ho, Y.S., J. Hazard Materials., 2009, vol. 165, nos. 1/3, pp. 218–220.

    Article  CAS  Google Scholar 

  2. Hu., C.Y., Lo, S.L., Kuan, W.H., and Lee, Y.D., Water Res., 2005, vol. 39, no. 5, pp. 895–901

    Article  CAS  Google Scholar 

  3. WHO (World Health Organization), Guidelines for Drinking Water Quality, Health Criteria and Supporting Information, Geneva, 1984.

  4. Mansson, A.R., and Withford, G.M., J. Dent. Res., 1990, vol. 69, pp. 706–713.

  5. Parhasarathy, N., Buffle, J. and Haerdi, W., Water Res., 1986, vol. 20, no. 4, pp. 443–448.

    Article  Google Scholar 

  6. Pervov, A.G., Dudkin, W.V., Sidorenko, O.A., Antipov, V.V., Khakhanov, S.A. and Maarov, R.I., Desalination, 2000, vol. 132, nos.1/3, pp. 315–321.

    Google Scholar 

  7. Solangi, I.B., Memon, S., and Bhanger, M.I., J. Hazard Materials, 2010, vol. 176, nos. 1/3, pp. 186–192.

    Article  CAS  Google Scholar 

  8. Fan, X, Parker, D.J., and Smith, M.D., Water Res., 2003, vol. 37, pp. 4929–4937.

    Article  CAS  Google Scholar 

  9. Lounici, H., Addour, L., Belhocine, D., Grib, H., Nicolas, S., Bariou, B., and Mameri, N., Desalination, 1997, vol. 114, pp. 241–251.

    Article  CAS  Google Scholar 

  10. Mohapatra, D., Mshra, D., Chaudhure, G.R., and Das, R.P., J. Colloid Interface Sci., 2004, vol. 275, pp. 355–359.

    Article  CAS  Google Scholar 

  11. Das, N., Pattaik, P., and Das, R., Ibid. 2005, vol. 292, pp. 1–10.

    CAS  Google Scholar 

  12. Raichur, A.M. and Basu, J.M., Separ. Purif. Technol., vol. 24, 2001, vol. 24, pp. 121–127.

    Article  CAS  Google Scholar 

  13. Agarwal, M., Rai, K., Shrivastay, R., and Das, S., J. Cleaner Produc., 2003, vol. 11, pp. 39–444.

    Article  Google Scholar 

  14. Wasay, S.A., Haron, M.J., Tokunaga, S., Water Environ. Res., 1996, vol. 68, pp. 295–300.

    Article  CAS  Google Scholar 

  15. Abe, I., Iwasaki, S., Tokimoto, T., Kawasaki, N., Nakamura, T., and Tanada, S., J. Colloid Interface Sci., 2004, vol. 275, pp. 35–39.

    Article  CAS  Google Scholar 

  16. Ramos, R.L., Ovalle-Turrubiartes, J., and Sanchez, M.A., Carbon, 1999, vol. 37, pp. 609–617

    Article  CAS  Google Scholar 

  17. Cengwloglu, Y., Kir, E., and Ersöz, M., Seart. Purif. Technol., 2002, vol. 28, pp. 81–8.

    Article  Google Scholar 

  18. Lai, Y.D. and Liu, J.C., Separ. Sci. Technol., 1996, vol. 31, pp. 2791–2803.

    Article  CAS  Google Scholar 

  19. Piekos R. and Paslawaska, S., Fuoride, 1999, vol. 32, pp. 14–19.

    CAS  Google Scholar 

  20. Rao, N.V.R.M. and Blashkaran, C.S., J. Fluorine Chem., 1988, vol. 41, pp. 17–24.

    Article  CAS  Google Scholar 

  21. Mohan, S.V., Ramanaiah, S.V., Rajkumar, B., and Sarma, P.N., J. Hazard. Materials, 2007, vol. 141, pp. 465–474.

    Article  CAS  Google Scholar 

  22. Pinon-Miramontes, M., Bautista-Margulis, R.G., and Perez-Hernandeza, A., Floride, 2003, vol. 36, pp. 122–128.

    CAS  Google Scholar 

  23. Sujana, M.G., Takhur, R.S., and Rao, S.B., J. Colloid Interface Sci., 1998, vol. 206, pp. 94–101.

    Article  CAS  Google Scholar 

  24. Jagtap, S., Thakre, D., Wanjari, S., Kamble, S., Labhsetwar, N., and Rayalu, S., Ibid., 2009, vol. 332, pp. 280–290.

    CAS  Google Scholar 

  25. Jamode, A.V., Sapkal, V.S., and Jamode, V.S., J. Institute of Sci., 2004, vol. 84, pp. 163–171.

    CAS  Google Scholar 

  26. Delval, F., Crini, G., and Vebrel, J., Biores. Techol., 2006, vol. 97, pp. 2173–2181.

    Article  CAS  Google Scholar 

  27. Smith, K.M., Fowler, G.D., Pulket, S., and Graham, N.J.D., Water Res., 2009, vol. 43, pp. 2569–2594.

    Article  CAS  Google Scholar 

  28. Lelghe, I., Carlee, R., Yperman, J., Screurs, S., and D’Haen, J., Ibid., 2012, vol. 46, pp. 2783–2794.

    Google Scholar 

  29. Aydin, S., Guneysu, S., and Arayici, S., J. Residuals Sci. Technol., 2005, vol. 2, pp. 221–226.

    Google Scholar 

  30. Tay, J.H., Chen, X.G., Jeyaseelan, S., and Graham, N., Chemosphere, 2001, vol. 44, pp. 45–51.

    Article  CAS  Google Scholar 

  31. Mahapatra, A., Ramteke, D.S., and Paliwal, L.J., J. Anal. and Appl. Pyrolysis., 2012, vol. 95, pp. 79–86.

    Article  CAS  Google Scholar 

  32. Dogan, V. and Aydin, S., Separ. Sci. and Technol., 2014, vol. 49, no. 9, pp. 1407–1415.

    Article  CAS  Google Scholar 

  33. Leyla-Ramos, R., Medellin-Castillo, N.A., Jacobo-Azuara, A. et al., J. Environ Eng. Manage., 2008, vol. 18, no. 5, pp. 301–309.

    Google Scholar 

  34. Suianaa, M.G., Mishrab, A., and Acharyaa, B.C., Appl. Surface Sci., 2008, vol. 270, pp. 767–776.

    Google Scholar 

  35. Gong, W.X., Qu, J.H., Liu, R.P., and Lan, H.C., Chem. Eng. J., 2012, vol. 189/190, pp. 126–133.

    Article  Google Scholar 

  36. Leyva-Ramos, R., Rivera-Utrilla, J., Medellin-Castillo, N.A., Sanchez-Polo, M., Ibid., 2010, vol. 158, no. 3, pp. 458–467.

    CAS  Google Scholar 

  37. Vitinantharat, S., Kositchayong,, S., and Chiarakorn, S., Appl. Surface Sci., 2010, vol. 256, no. 17, pp. 5458–5462.

    Article  Google Scholar 

  38. Zhenya-Zhang, N.C., Feng, C.Li.M., Chen, R., and Sugiura, N., Desalination, 2011, vol. 268, nos. 1/3, pp. 76–82.

    Google Scholar 

  39. Alagumuhu, G., Veeraputhiran, R., and Venkataraman, R., Hemijska Industrija, 2011, vol 65, no. 1, pp. 23–35.

    Article  Google Scholar 

  40. Hosni, K. and Srasra, E., J. Water Chem. and Technol., 2011, vol. 33, no. 3, pp. 164–176.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Aydin.

Additional information

The text was submitted by the authors in English.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dogan, V., Aydin, S. Kinetic and equilibrium studies of fluoride adsorption by a carbonaceous material from pyrolysis of waste sludge. J. Water Chem. Technol. 38, 319–326 (2016). https://doi.org/10.3103/S1063455X16060035

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1063455X16060035

Keywords

Navigation