Skip to main content
Log in

Ethanol Addition for Enhancing Denitrification at the Uranium Mill Tailing Site in Monument Valley, AZ

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Past mining and processing of uranium ore at a former uranium mining site near Monument Valley, AZ has resulted in nitrate contamination of groundwater. The objective of this study was to investigate the potential of ethanol addition for enhancing the reduction of nitrate in groundwater. The results of two pilot-scale field tests showed that the concentration of nitrate decreased, while the concentration of nitrous oxide (a product of denitrification) increased. In addition, changes in aqueous concentrations of sulfate, iron, and manganese indicated that the ethanol amendment caused a change in prevailing redox conditions. The results of compound-specific stable isotope analysis for nitrate–nitrogen indicated that the nitrate concentration reductions were biologically mediated. Denitrification rate coefficients estimated for the pilot tests were approximately 50 times larger than resident-condition (non-enhanced) values obtained from prior characterization studies conducted at the site. The nitrate concentrations in the injection zone have remained at levels three orders of magnitude below the initial values for many months, indicating that the ethanol amendments had a long-term impact on the local subsurface environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adav, S. S., Lee, D., & Lai, J. Y. (2010). Enhanced biological denitrification of high concentration of nitrite with supplementary carbon source. Applied Microbiology and Biotechnology, 85, 773–778.

    Article  CAS  Google Scholar 

  • Blackmer, A., & Bremner, J. (1977). Nitrogen isotope discrimination in denitrification of nitrate in soils. Soil Biology and Biochemistry, 9, 73–77.

    Article  CAS  Google Scholar 

  • Burbery, L., Cassiani, G., Andreotti, G., Ricchiuto, T., & Semple, K. T. (2004). Single-well reactive tracer test and stable isotope analysis for determination of microbial activity in a fast hydrocarbon-contaminated aquifer. Environmental Pollution, 129, 321–330.

    Article  CAS  Google Scholar 

  • Carroll, K. C., Jordan, F., Glenn, E. P., Waugh, W. J., & Brusseau, M. L. (2009). Comparison of nitrate attenuation characterization methods at the uranium mill tailing site in Monument Valley, Arizona. Journal of Hydrology. doi:10.1016/j.jhydrol.2009.09.006.

  • Chapelle, F. H., Bradley, P. M., Lovley, D. R., & Vroblesky, D. A. (1996). Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods. Ground Water, 34, 691–698.

    Article  CAS  Google Scholar 

  • DOE. (1999). Final site observational work plan for the UMTRA project site at the Monument Valley, Arizona. US Department of Energy, Office of Legacy Management, Document: U0018101.

  • Interstate Technology and Regulatory Council (ITRC). (2000). Emerging technologies for enhanced in situ biodenitrification (EISBD) of nitrate-contaminated ground water.

  • Istok, J. D., Senko, J. S., Krumholz, L. R., Watson, D., Bogle, M.-A., Peacock, A., et al. (2004). In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer. Environmental Science & Technology, 38(2), 468–475.

    Article  CAS  Google Scholar 

  • Jordan, F., Waugh, J., Glenn, E. P., Sam, L., Thompson, T., & Thompson, T. L. (2008). Natural bioremediation of a nitrate-contaminated soil-and-aquifer system in a desert environment. Journal of Arid Environment, 72, 748–763.

    Article  Google Scholar 

  • Kendell, C., & McDonnell, J. J. (Eds.). (1998). Isotope tracers in catchment hydrology (p. 839). New York: Elsevier.

    Google Scholar 

  • Khan, I.A., Spalding, R.F. (2003). Development of a procedure for sustainable in situ aquifer denitrification. Remediation, 13(2, Spring), 53–69.

    Google Scholar 

  • Martin, D., Salminen, J. M., Niemi, R. M., Heiskanen, I. M., Valve, M. J., Hellstén, P. P., et al. (2009). Acetate and ethanol as potential enhancers of low temperature denitrification in soil contaminated by fur farms: A pilot-scale study. Journal of Hazardous Materials, 163, 1230–1238.

    Article  CAS  Google Scholar 

  • McKeon, C., Jordan, F. L., Glenn, E. P., Waugh, W. J., & Nelson, S. G. (2005). Rapid nitrate loss from a contaminated desert soil. Journal of Arid Environments, 61, 119–136.

    Article  Google Scholar 

  • McKeon, C., Glenn, E. P., Waugh, W. J., Eastoe, C., Jordan, F., & Nelson, S. G. (2006). Growth and water and nitrate uptake patterns of grazed and ungrazed desert shrubs growing over a nitrate contamination plume. Journal of Arid Environments, 64, 1–21.

    Article  Google Scholar 

  • Pauwels, H., Kloppmann, W., Foucher, J. C., Martelat, A., & Fritsche, V. (1998). Field tracer test for denitrification in a pyrite-bearing schist aquifer. Applied Geochemistry, 13, 767–788.

    Article  CAS  Google Scholar 

  • Rivett, M. O., Buss, S. R., Morgan, P., Smith, J. W. N., & Bemment, C. D. (2008). Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Research, 42, 4215–4232.

    Article  CAS  Google Scholar 

  • Robertson, W. D., Russel, B. M., & Cherry, J. A. (1996). Attenuation of nitrate in aquitard sediments of southern Ontario. Journal of Hydrology, 180, 267–281.

    Article  CAS  Google Scholar 

  • Santos, S. G., Varesche, M. B. A., Zaiat, M., & Foresti, E. (2004). Comparison of methanol, ethanol, and methane as electron donors for denitrification. Environmental Engineering Science, 21, 313–320.

    Article  Google Scholar 

  • Schürmann, A., Schroth, M. H., Saurer, M., Bernasconi, S. M., & Zeyer, J. (2003). Nitrate-consuming processes in a petroleum-contaminated aquifer quantified using push–pull tests combined with 15N isotope and acetylene-inhibition methods. Journal of Contaminant Hydrology, 66, 59–77.

    Article  Google Scholar 

  • Schwientek, M., Einsiedl, F., Stichler, W., Stögbauer, A., Strauss, H., & Maloszewski, P. (2008). Evidence for denitrification regulated by pyrite oxidation in a heterogeneous porous groundwater system. Chemical Geology, 255, 60–67.

    Article  CAS  Google Scholar 

  • Smith, R. L., Garabedian, S. P., & Brooks, M. H. (1996). Comparison of denitrification activity measurements in groundwater using cores and natural-gradient tracer tests. Environmental Science & Technology, 30, 3448–3456.

    Article  CAS  Google Scholar 

  • Smith, R. L., Miller, D. N., Brooks, M. H., Widdowson, M. A., & Killingstad, M. W. (2001). In situ stimulation of groundwater denitrification with formate to remediate nitrate contamination. Environmental Science & Technology, 35, 196–203.

    Article  CAS  Google Scholar 

  • Smith, R. L., Baumgartner, D. N., Repert, D. A., & Böhlke, J. K. (2006). Assessment of nitrification potential in ground water using short term, single-well injection experiments. Microbial Ecology, 51, 22–35.

    Article  CAS  Google Scholar 

  • Sun, Y., Petersen, J. N., Clement, T. P., & Hooker, B. S. (1998). Effect of reaction kinetics on predicted concentration profiles during subsurface bioremediation. Journal of Contaminant Hydrology, 31, 359–372.

    Article  CAS  Google Scholar 

  • Tartakovsky, B., Millette, D., & Guiot, S. R. (2002). Ethanol-stimulated bioremediation of nitrate-contaminated ground water. Ground Water Monitoring and Remediation, 22, 78–87.

    Article  CAS  Google Scholar 

  • Tesoriero, A. J., Liebscher, H., & Cox, S. E. (2000). Mechanism and rate of denitrification in an agricultural watershed: Electron and mass balance along groundwater flow paths. Water Resources Research, 36, 1545–1559.

    Article  CAS  Google Scholar 

  • Vitòria, L., Soler, A., Canals, A., & Otero, N. (2008). Environmental isotopes (N, S, C, O, D) to determine natural attenuation processes in nitrate contaminated waters: Example of Osona (NE Spain). Applied Geochemistry, 23, 3597–3611.

    Article  Google Scholar 

  • Wiedemeier, T. H., Sawson, M. A., Wilson, J. T., Kampbell, D. H., Miller, R. N., & Hansen, J. E. (1996). Approximation of biodegradation rate constants for monoaromatic hydrocarbons (BTEX) in ground water. Ground Water Monitoring and Remediation, 186, 186–194.

    Google Scholar 

  • World Health Organization (WHO). (2007). Nitrate and nitrite in drinking-water. Document: WHO/SDE/WSH/07.01/16.

  • Zhang, Y. C., Slomp, C. P., Broers, H. P., Passier, H. F., & Cappellen, P. V. (2009). Denitrification coupled to pyrite oxidation and changes in groundwater quality in a shallow sandy aquifer. Geochimica et Cosmochimica Acta, 73, 6716–6726.

    Article  CAS  Google Scholar 

  • Zhu, C., Anderson, G. M., & Burden, D. S. (2002). Natural attenuation reactions at a uranium mill tailings site, Western U.S.A. Ground Water, 40, 5–13.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Department of Energy. We thank S.M. Stoller Incorporated for their invaluable support and collaboration. We thank the students of the Contaminant Transport Laboratory for their help in conducting the test and in assisting in the compiling and analysis of data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Brusseau.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borden, A.K., Brusseau, M.L., Carroll, K.C. et al. Ethanol Addition for Enhancing Denitrification at the Uranium Mill Tailing Site in Monument Valley, AZ. Water Air Soil Pollut 223, 755–763 (2012). https://doi.org/10.1007/s11270-011-0899-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-011-0899-1

Keywords

Navigation