Skip to main content
Log in

Arsenic contamination in groundwater of moribund delta of Bengal basin: Quantitative assessment through adsorption kinetics and contaminant transport modelling

  • Published:
Journal of Earth System Science Aims and scope Submit manuscript

Abstract

The similarity in average concentration (55 µg/L) of dissolved arsenic in groundwater of active and inactive (moribund) parts of the Ganges–Meghna–Bramhaputra (GMB) delta provokes further research in the domain. The soil–water system of the moribund deltaic region of the western Bengal basin no longer receives arsenic-laced sediments from Himalayan provenances, unlike the active part of the GMB delta. Supply from agricultural and industrial sources is almost absent. Notwithstanding, the problem of arsenic contamination in groundwater in the study area is still persistent even today. The present study, based on adsorption experiments and numerical modelling (HYDRUS-1D software) based on the moribund deltaic region of the Western Bengal basin, suggests that groundwater-based irrigation systems establish a continuous loop of arsenic recycling from soil to groundwater and vice versa to sustain the problem of contamination in the region. The results show that the indigenous silty soils can leach up to 1000 µg/L of arsenic almost throughout the year (325 days), even when the concentrations of arsenic in soils are within the normal range (2.9–3.5 mg/kg). The role of pH, Eh, soil organic carbon (SOC), thickness of the vadose zone and the adsorptive capacity of the soils towards arsenic has been quantified.

Research highlights

  • The mechanism that sustains and aggravates the problem of groundwater arsenic contamination in the moribund deltaic region has been suggested and the loop of arsenic built up and release acting within the soil-water system of the moribund delta has been deciphered.

  • Role of irrigation practices upon arsenic dynamics assessed through adsorption studies and contaminant transport model has been deciphered.

  • Role of pH, Eh and SOC in arsenic mobilization are quantified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

(source: Appelo and Postma 2004).

Figure 7

Similar content being viewed by others

References

  • Adhikari K and Mal U 2021 Evaluation of contamination of manganese in groundwater from overburden dumps of Lower Gondwana coal mines; Environ. Earth Sci. 80 1–15.

    Article  Google Scholar 

  • Akai J, Izumi K, Fukuhara H, Masuda H, Nakano S, Yoshimura T, Ohfuji H, Anawar H M and Akai K 2004 Mineralogical and geomicrobiological investigations on groundwater arsenic enrichment in Bangladesh; J. Appl. Geochem. 19(2) 215–230.

    Article  CAS  Google Scholar 

  • Alam M G and Tokunaga S 2004 Chemical extraction of arsenic from contaminated soil; J. Environ. Sci. Health A 41(4) 631–643.

    Article  Google Scholar 

  • Ali M A, Badruzzaman A B, Jalil M A, Hossain M D, Ahmed M F, Masud A A and Kamruzzaman M 2003 Fate of Arsenic in the Environment. Arsenic Contamination: Bangladesh Perspective (ed.) Ahmed M F, ITN-Bangladesh, June 7–8.

  • Anawar H, Komaki K, Akai J, Takada J, Ishizuka T, Takahashi T, Yoshioka T and Kato K 2002 Diagenetic control on arsenic partitioning in sediments of the Meghna River delta, Bangladesh; Environ. Geol. 41 816–825.

    Article  CAS  Google Scholar 

  • American Public Health Association (APHA) Washington DC 2005 Standard Methods of Water and Wastewater 21 2–61, ISBN: 0875530478.

  • Appel C, Ma L Q, Rhue R D and Kennelley E 2003 Point of zero charge determination in soils and minerals via traditional methods and detection of electroacoustic mobility; Geoderma 113(1–2) 77–93.

    Article  CAS  Google Scholar 

  • Appelo C A and Postma D 2004 Geochemistry, groundwater and pollution, 2nd edn, CRC Press, 683p.

  • Appleyard S J, Angeloni J and Watkins R 2006 Arsenic-rich groundwater in an urban area experiencing drought and increasing population density, Perth, Australia; Appl. Geochem. 21(1) 83–97.

    Article  CAS  Google Scholar 

  • Banning A 2021 Geogenic arsenic and uranium in Germany: Large-scale distribution control in sediments and groundwater; J. Hazard. Mater. 405 124–186.

    Article  Google Scholar 

  • Bhattacharya P, Chatterjee D and Jacks G 1997 Occurrence of arsenic-contaminated groundwater in alluvial aquifers from delta plains, eastern India: Options for safe drinking water supply; Int. J. Water Resour. Dev. 13(1) 79–92.

    Article  Google Scholar 

  • Bhattacharya P, Samal A C, Majumdar J and Santra S C 2010 Arsenic contamination in rice, wheat, pulses, and vegetables: A study in an arsenic affected area of West Bengal, India; Water Air Soil Pollut. 213 3–13.

    Article  CAS  Google Scholar 

  • Bošnjak M U, Casiot C, Duić Ž, Fazinić S, Halamić J, Sipos L, Santo V and Dadić Ž 2013 Sediment characterization and its implications for arsenic mobilization in deep aquifers of eastern Croatia; J. Geochem. Explor. 126 55–66.

    Article  Google Scholar 

  • Bureau of Indian Standards IS 2720 (Part 4) 1985 Methods of test for soils: Grain size analysis; New Delhi, India.

    Google Scholar 

  • Bureau of Indian Standards IS 2720 (Part 6) 1987 Methods of test for soils, Part 26: Determination of pH value (second revision); New Delhi, India.

    Google Scholar 

  • Carlson L, Bigham J M, Schwertmann U, Kyek A and Wagner F 2002 Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: A comparison with synthetic analogues; Environ. Sci. Technol. 36(8) 1712–1719.

    Article  CAS  Google Scholar 

  • Central Ground Water Board (CGWB) 2009 Groundwater Booklet, Murshidabad District, Central Ground Water Board, Ministry of Water Resources, Government of India.

  • Chakraborti D, Rahman M M, Paul K, Chowdhury U K, Sengupta M K, Lodh D, Chanda C R, Saha K C and Mukherjee S C 2002 Arsenic calamity in the Indian subcontinent: What lessons have been learned?; Talanta 58(1) 3–22.

    Article  CAS  Google Scholar 

  • Chakraborty M, Mukherjee A and Ahmed K M 2015 A review of groundwater arsenic in the Bengal Basin, Bangladesh and India: From source to sink; Curr. Pollut. Rep. 220–247.

  • Chakraborty M, Mukherjee A, Ahmed K M, Fryar A E, Bhattacharya A, Zahid A, Das R and Chattopadhyay S 2022 Influence of hydrostratigraphy on the distribution of groundwater arsenic in the transboundary Ganges River delta aquifer system, India and Bangladesh; Geol. Soc. Am. Bull. 134(9–10) 2680–2692.

    Article  CAS  Google Scholar 

  • Chen Y N, Chai L Y and Shu Y D 2008 Study of arsenic (V) adsorption on bone char from aqueous solution; J. Hazard. Mater. 160(1) 168–172.

    Article  CAS  Google Scholar 

  • Chowdhury N R, Das A, Joardar M, De A, Mridha D, Das R, Rahman M M and Roychowdhury T 2020 Flow of arsenic between rice grain and water: Its interaction, accumulation and distribution in different fractions of cooked rice; Sci. Total Environ. 731 138937.

    Article  CAS  Google Scholar 

  • Chowdhury T R, Basu G K, Mandel B K, Biswass B K, Samanta G, Chowdhury U K, Chandra C R, Lodh D, Roy S L, Saha K C, Roy S, Kabir S, Quamruzzaman Q and Chakraborti D 1990 Arsenic poisoning in the Ganges delta; Nature 401 545–546.

    Article  Google Scholar 

  • Churchman G J, Gates W P, Theng B K G and Yuan G 2006 Clays and clay minerals for pollution control; Dev. Clay Sci. 1 625–675.

    Article  CAS  Google Scholar 

  • Cullen W R and Reimer K J 1989 Arsenic speciation in the environment; Chem. Rev. 89(4) 713–764.

    Article  CAS  Google Scholar 

  • Datta S, Johannesson K, Mladenov N, Sankar M, Ford S, Vega M, Neal A, Kibria M, Krehel A and Hettiarachchi G 2014 Groundwater-sediment sorption mechanisms and role of organic matter in controlling arsenic release into aquifer sediments of Murshidabad area (Bengal basin), India; Proceedings of the 5th International Congress on Arsenic in the Environment. One Century of the Discovery of Arsenicosis in Latin America (1914–2014), pp. 95–97.

  • Deliyanni E A, Kyzas G Z, Triantafyllidis K S and Matis K A 2015 Activated carbons for the removal of heavy metal ions: A systematic review of recent literature focused on lead and arsenic ions; Open Chem. 13(1) 000010151520150087.

    Article  Google Scholar 

  • Desbarats A J, Koenig C E, Pal T, Mukherjee P K and Beckie R D 2014 Groundwater flow dynamics and arsenic source characterization in an aquifer system of West Bengal, India; Water Resour. Res. 50(6) 4974–5002.

    Article  CAS  Google Scholar 

  • Dexter A R 2004 Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth; Geoderma 120(3–4) 201–214.

    Article  Google Scholar 

  • Dousova B, Buzek F, Lhotka M, Krejcova S and Boubinova R 2016 Leaching effect on arsenic mobility in agricultural soils; J. Hazard. Mater. 307 231–239.

    Article  CAS  Google Scholar 

  • Doušová B, Fuitová L, Grygar T, Machovič V, Koloušek D, Herzogová L and Lhotka M 2009 Modified aluminosilicates as low-cost sorbents of As(III) from anoxic groundwater; J. Hazard. Mater. 165(1–3) 134–140.

    Article  Google Scholar 

  • Dowling C B, Poreda R J, Basu A R, Peters S L and Aggarwal P K 2002 Geochemical study of arsenic release mechanisms in the Bengal Basin groundwater; Water Resour. Res. 38(9) 12–21.

    Article  Google Scholar 

  • Drahota P, Filippi M, Ettler V, Rohovec J, Mihaljevič M and Šebek O 2012 Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump; Sci. Total Environ. 414 546–555.

    Article  CAS  Google Scholar 

  • Dufailly V, Guérin T, Noël L, Frémy J M and Beauchemin D 2008 A simple method for the speciation analysis of bio-accessible arsenic in seafood using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry; J. Anal. At. Spectrom. 23(9) 1263–1268.

    Article  CAS  Google Scholar 

  • Essington M E 2015 Soil and water chemistry: An integrative approach; CRC press.

  • Ettler V, Tomášová Z, Komárek M, Mihaljevič M, Šebek O and Michálková Z 2015 The pH-dependent long-term stability of an amorphous manganese oxide in smelter-polluted soils: Implication for chemical stabilization of metals and metalloids; J. Hazard. Mater. 286 386–394.

    Article  CAS  Google Scholar 

  • Feng Q, Zhang Z, Chen Y, Liu L, Zhang Z and Chen C 2013 Adsorption and desorption characteristics of arsenic on soils: Kinetics, equilibrium, and effect of Fe(OH)3 colloid, H2SiO3 colloid and phosphate; Procedia Environ. Sci. 18 26–36.

    Article  CAS  Google Scholar 

  • Frost F, Franke D, Pierson K, Woodruff L, Raasina B, Davis R and Davies J 1993 A seasonal study of arsenic in groundwater, Snohomish County, Washington, USA; Environ. Geochem. Health 15(4) 209–214.

    Article  CAS  Google Scholar 

  • Gelhar L W 1986 Stochastic subsurface hydrology from theory to applications; Water Resour. Res. 22(9S) 135S–145S.

    Article  Google Scholar 

  • Gerdelidani A F, Towfighi H, Shahbazi K, Lamb D T, Choppala G, Abbasi S, Bari A F, Naidu R and Rahman M M 2021 Arsenic geochemistry and mineralogy as a function of particle-size in naturally arsenic-enriched soils; J. Hazard. Mater. 403 123931.

    Article  CAS  Google Scholar 

  • Golka K, Hengstler J G, Marchan R and Bolt H M 2010 Severe arsenic poisoning: One of the largest man-made catastrophes; Arch. Toxicol. 84 583–584.

    Article  CAS  Google Scholar 

  • Goodbred Jr S L and Kuehl S A 1999 Holocene and modern sediment budgets for the Ganges–Brahmaputra river system: Evidence for highstand dispersal to flood-plain, shelf, and deep-sea depocenters; Geology 27(6) 559–562.

  • Grafe M J, Eick M J and Grossl P R 2001 Adsorption of arsenate (V) and arsenite (III) on goethite in the presence and absence of dissolved organic carbon; Soil Sci. Soc. Am. J. 65(6) 1680–1687.

    Article  CAS  Google Scholar 

  • Gu S, Kang X, Wang L, Lichtfouse E and Wang C 2019 Clay mineral adsorbents for heavy metal removal from wastewater: A review; Environ. Chem. Lett. 17 629–654.

    Article  CAS  Google Scholar 

  • Guillot S and Charlet L 2007 Bengal arsenic, an archive of Himalaya orogeny and paleohydrology; J. Environ. Sci. Health A 42(12) 1785–1794.

    Article  CAS  Google Scholar 

  • Gullens J, Champ D R and Jackson R E 1979 Influence of redox environments on the mobility of arsenic in ground water; In: Chem. modelling in aqueous solution; ACS Symp. Ser. 7 81.

  • Gurung J K, Ishiga H and Khadka M S 2005 Geological and geochemical examination of arsenic contamination in groundwater in the Holocene Terai Basin, Nepal; Environ. Geol. 49 98–113.

    Article  CAS  Google Scholar 

  • Haque M N, Ali M H and Roy T S 2018 Specific gravity, dry matter and starch concentration of different potato cultivars as affected by Arsenic contamination; Potato Res. 61 51–64.

    Article  CAS  Google Scholar 

  • Harvey J W and Fuller C C 1998 Effect of enhanced manganese oxidation in the hyporheic zone on basin-scale geochemical mass balance; Water Resour. Res. 34(4) 623–636.

    Article  CAS  Google Scholar 

  • He Y T and Hering J G 2009 Enhancement of arsenic (III) sequestration by manganese oxides in the presence of iron (II); Water, Air, Soil Pollut. 203 359–368.

    Article  CAS  Google Scholar 

  • Hingston F J, Atkinson R J, Posner A M and Quirk J P 1967 Specific adsorption of anions; Nature 215(5109) 1459–1461.

    Article  CAS  Google Scholar 

  • Hou Q, Zhang Y, Li L and Song S 2017 Effects of particle size and redox potential on arsenic fractionation in soils irrigated with arsenate-rich water; Soil Sedim. Contam. 26(4) 391–403.

    Article  CAS  Google Scholar 

  • Howe P, Malcolm H and Dobson S 2004 Manganese and its compounds: Environmental aspects; World Health Organization.

  • Huang G, Chen Z, Wang J, Hou Q and Zhang Y 2016 Impact of temperature on the aging mechanisms of arsenic in soils: Fractionation and bioaccessibility; Environ. Sci. Pollut. Res. 23 4594–4601.

    Article  CAS  Google Scholar 

  • Islam F S, Gault A G, Boothman C, Polya D A, Charnock J M, Chatterjee D and Lloyd J R 2004 Role of metal-reducing bacteria in arsenic release from Bengal delta sediments; Nature 430(6995) 68–71.

    Article  CAS  Google Scholar 

  • Islam S N and Gnauck A 2008 Mangrove wetland ecosystems in Ganges–Brahmaputra delta in Bangladesh; Front. Earth Sci. China 2 439–448.

  • Islam S N 2016 Deltaic floodplains development and wetland ecosystems management in the Ganges–Brahmaputra–Meghna Rivers Delta in Bangladesh; Sustain. Water Resour. Manag. 2 237–256.

    Article  Google Scholar 

  • Itai T, Masuda H, Takahashi Y, Mitamura M and Kusakabe M 2006 Determination of As III/As V ratio in alluvial sediments of the Bengal Basin using X-ray absorption near-edge structure; Chem. Lett. 35(8) 866–867.

    Article  CAS  Google Scholar 

  • Jung H B, Zheng Y, Rahman M W, Rahman M M and Ahmed K M 2015 Redox zonation and oscillation in the hyporheic zone of the Ganges–Brahmaputra–Meghna Delta: Implications for the fate of groundwater arsenic during discharge; J. Appl. Geochem. 63 647–660.

    Article  CAS  Google Scholar 

  • Kazmierczak J, Dang T T, Jakobsen R, Van Hoang H, Larsen F, Sø H U, Pham N Q and Postma D 2022 Groundwater arsenic content in quaternary aquifers of the Red River delta, Vietnam, controlled by the hydrogeological processes; J. Hydrol. 609 127778.

    Article  CAS  Google Scholar 

  • Knappett P S, Li Y, Loza I, Hernandez H, Avilés M, Haaf D, Majumder S, Huang Y, Lynch B, Piña V and Wang J 2020 Rising arsenic concentrations from dewatering a geothermally influenced aquifer in central Mexico; Water Res. 185 116257.

    Article  CAS  Google Scholar 

  • Kneebone P E, O’day P A, Jones N and Hering J G 2002 Deposition and fate of arsenic in iron-and arsenic-enriched reservoir sediments; Environ. Sci. Technol. 36(3) 381–386.

    Article  CAS  Google Scholar 

  • Korte N 1991 Naturally occurring arsenic in groundwaters of the Midwestern United States; Environ. Geol. 18(2) 137–141.

    CAS  Google Scholar 

  • Kulkarni H V, Mladenov N, Johannesson K H and Datta S 2017 Contrasting dissolved organic matter quality in groundwater in Holocene and Pleistocene aquifers and implications for influencing arsenic mobility; J. Appl. Geochem. 77 194–205.

    Article  CAS  Google Scholar 

  • Lee C R 1972 Interrelationships of Aluminum and Manganese on the Potato Plant 1; J. Agron. 64(4) 546–549.

    Article  CAS  Google Scholar 

  • Li Y, Dong S, Qiao J, Liang S, Wu X, Wang M, Zhao H and Liu W 2020 Impact of nanominerals on the migration and distribution of cadmium on soil aggregates; J. Clean. Produc. 262 121355.

  • Li C, Gao X, Zhang X, Wang Y and Howard K 2022 Groundwater fluoride and arsenic mobilization in a typical deep aquifer system within a semi-arid basin; J. Hydrol. 609 127767.

    Article  CAS  Google Scholar 

  • Lim D T, Tuyen T N, Nhiem D N, Duc D H, Chuc P N, Bac N Q, Tung D X, Pham N N, Ha L T, Tu N T and Nguyen V T 2021 Fluoride and arsenite removal by adsorption on La2O3–CeO2/laterite; J. Nanomater., https://doi.org/10.1155/2021/9991050.

    Article  Google Scholar 

  • Lima I Q, Ramos O R, Munoz M O, Aguirre J Q, Duwig C, Maity J P, Sracek O and Bhattacharya P 2020 Spatial dependency of arsenic, antimony, boron and other trace elements in the shallow groundwater systems of the Lower Katari Basin, Bolivian Altiplano; Sci. Total Environ. 719 137505.

    Article  Google Scholar 

  • Lindsay J F, Holliday D W and Hulbert A G 1991 Sequence stratigraphy and the evolution of the Ganges–Brahmaputra delta complex (1); AAPG Bull. 75(7) 1233–1254.

  • Lombi E, Sletten R S and Wenzel W W 2000 Sequentially extracted arsenic from different size fractions of contaminated soils; Water, Air, Soil Pollut. 124 319–332.

    Article  CAS  Google Scholar 

  • Ludwig C, Devidal J L and Casey W H 1996 The effect of different functional groups on the ligand-promoted dissolution of NiO and other oxide minerals; Geochim. Cosmochim. Acta 60(2) 213–224.

    Article  CAS  Google Scholar 

  • Luu T T, Sthiannopkao S and Kim K W 2009 Arsenic and other trace elements contamination in groundwater and a risk assessment study for the residents in the Kandal Province of Cambodia; Environ. Int. 35(3) 455–460.

    Article  CAS  Google Scholar 

  • Ma Y, Feng S, Su D, Gao G and Huo Z 2010 Modeling water infiltration in a large layered soil column with a modified Green-Ampt model and HYDRUS-1D; Comput. Electron. Agric. 71 S40–S47.

    Article  Google Scholar 

  • Magalhaes M C 2003 Arsenic: An environmental problem limited by solubility; Pure Appl. Chem. 75(1) 139.

    Article  CAS  Google Scholar 

  • Mandaliev P N, Mikutta C, Barmettler K, Kotsev T and Kretzschmar R 2014 Arsenic species formed from arsenopyrite weathering along a contamination gradient in circumneutral river floodplain soils; Environ. Sci. Technol. 48(1) 208–217.

    Article  CAS  Google Scholar 

  • Manning B A, Fendorf S E and Goldberg S 1998 Surface structures and stability of arsenic (III) on goethite: Spectroscopic evidence for inner-sphere complexes; Environ. Sci. Technol. 32(16) 2383–2388.

    Article  CAS  Google Scholar 

  • Manning B A and Suarez D L 2000 Modeling arsenic (III) adsorption and heterogeneous oxidation kinetics in soils; Soil Sci. Soc. Am. J. 64(1) 128–137.

    Article  CAS  Google Scholar 

  • Martinez V D, Vucic E A, Becker-Santos D D, Gil L and Lam W L 2011 Arsenic exposure and the induction of human cancers; J. Toxicol., https://doi.org/10.1155/2011/431287.

    Article  Google Scholar 

  • Mazumdar D N G 2012 Health effects of chronic arsenic toxicity: Studies in West Bengal, India; In: Arsenic contamination in water and food chain (eds) Mazumdar D N G and Sarkar S,  DNGM Research Foundation, India, pp. 11–22.

    Google Scholar 

  • McArthur J M, Ravenscroft P, Safiulla S and Thirlwall M F 2001 Arsenic in groundwater: Testing pollution mechanisms for sedimentary aquifers in Bangladesh; Water Resour. Res. 37(1) 109–117.

    Article  CAS  Google Scholar 

  • McArthur J M, Banerjee D M, Hudson-Edwards K A, Mishra R, Purohit R, Ravenscroft P, Cronin A, Howarth R J, Chatterjee A, Talukder T and Lowry D 2004 Natural organic matter in sedimentary basins and its relation to arsenic in anoxic groundwater: The example of West Bengal and its worldwide implications; J. Appl. Geochem. 19(8) 1255–1293.

    Article  CAS  Google Scholar 

  • McGovern E C 1987 Background concentrations of 20 elements in soils with special regard for New York State; Wildlife Pathology Unit, Wildlife Resources Center, New York State Department of Environmental Conservation.

  • Meharg A A, Adomaco E, Lawgali Y, Deacon C and Williams P 2007 Levels of arsenic in rice–literature review; Food Standards Agency Contract C 101045.

  • Michael H A and Voss C I 2008 Evaluation of the sustainability of deep groundwater as an arsenic-safe resource in the Bengal Basin; PNAS USA 105(25) 8531–8536.

    Article  CAS  Google Scholar 

  • Miguel A, del Campo Martin, María V E, Ignacio M, José L E, Gladys L B and Eric M-C 2021 Effect of organic matter and hydrogel application on nitrate leaching in a turf grass crop: A simulation study using HYDRUS; J. Soils Sedim. 21 1190–1205, https://doi.org/10.1007/s11368-020-02847-1.

    Article  CAS  Google Scholar 

  • Mihajlov I, Mozumder M R, Bostick B C, Stute M, Mailloux B J, Knappett P S, Choudhury I, Ahmed K M, Schlosser P and van Geen A 2020 Arsenic contamination of Bangladesh aquifers exacerbated by clay layers; Nat. Commun. 11(1) 2244.

    Article  CAS  Google Scholar 

  • Mojid M A, Hossain A Z and Wyseure G C 2018 Relation of reactive solute-transport parameters to basic soil properties; Eurasian J. Soil Sci. 7(4) 326–336.

    CAS  Google Scholar 

  • Moncure G, Jankowski P A and Drever J I 1992 The hydrochemistry of arsenic in reservoir sediments; In: Intl. Symp. Water–Rock Interac., Milltown, Montana, USA, pp. 513–516.

  • Mora A, Torres-Martínez J A, Moreau C, Bertrand G and Mahlknecht J 2021 Mapping salinization and trace element abundance (including As and other metalloids) in the groundwater of north-central Mexico using a double-clustering approach; Water Res. 205 117709.

    Article  CAS  Google Scholar 

  • Morgan J J and Stumm W 1965 The role of multivalent metal oxides in limnological transformations, as exemplified by iron and manganese; In: Adv. Water Resour., Pergamon, pp. 103–131.

  • Mukherjee A, Fryar A E and Howell P D 2007 Regional hydrostratigraphy and groundwater flow modeling in the arsenic-affected areas of the western Bengal basin, West Bengal, India; Hydrogeol. J. 15 1397–1418.

  • Mukherjee A, Fryar A E, Eastridge E M, Nally R S, Chakraborty M and Scanlon B R 2018 Controls on high and low groundwater arsenic on the opposite banks of the lower reaches of River Ganges, Bengal basin, India; Sci. Total Environ. 645 1371–1387.

    Article  CAS  Google Scholar 

  • Mukherjee A, Sarkar S, Chakraborty M, Duttagupta S, Bhattacharya A, Saha D, Bhattacharya P, Mitra A and Gupta S 2021 Occurrence, predictors and hazards of elevated groundwater arsenic across India through field observations and regional-scale AI-based modeling; Sci. Total Environ. 759 143511.

    Article  CAS  Google Scholar 

  • Neal Andrew 2010 Hydrogeochemical and mineralogical evaluation of groundwater arsenic contamination in Murshidabad district, West Bengal, India; Diss. Kansas State University.

  • Nguyen T T, Loganathan P, Nguyen T V and Vigneswaran S 2020 Removing arsenic from water with an original and modified natural manganese oxide ore: Batch kinetic and equilibrium adsorption studies; Environ. Sci. Pollut. Res. 27 5490–5502.

    Article  CAS  Google Scholar 

  • Nriagu J O and Pacyna J M 1988 Quantitative assessment of worldwide contamination of air, water and soils by trace metals; Nature 333(6169) 134–139.

    Article  CAS  Google Scholar 

  • Oremland R S and Stolz J F 2003 The ecology of arsenic; Science 300(5621) 939–944.

    Article  CAS  Google Scholar 

  • Osborne T H, McArthur J M, Sikdar P K and Santini J M 2015 Isolation of an arsenate-respiring bacterium from a redox front in an arsenic-polluted aquifer in West Bengal, Bengal Basin; Environ. Sci. Technol. 49(7) 4193–4199.

    Article  CAS  Google Scholar 

  • Parks G A and Bruyn P D 1962 The zero point of charge of oxides; J. Phys. Chem. 66(6) 967–973.

    Article  CAS  Google Scholar 

  • Parsons C T, Couture R M, Omoregie E O, Bardelli F, Greneche J M, Roman-Ross G and Charlet L 2013 The impact of oscillating redox conditions: Arsenic immobilisation in contaminated calcareous floodplain soils; Environ. Pollut. 178 254–263.

    Article  CAS  Google Scholar 

  • Pierce M L and Moore C B 1980 Adsorption of arsenite on amorphous iron hydroxide from dilute aqueous solution; Environ. Sci. Technol. 14(2) 214–216.

    Article  CAS  Google Scholar 

  • Pincetti-Zúniga G P, Richards L A, Tun Y M, Aung H P, Swar A K, Reh U P, Khaing T, Hlaing M M, Myint T A, Nwe M L and Polya D A 2020 Major and trace (including arsenic) groundwater chemistry in central and southern Myanmar; J. Appl. Geochem. 115 104535.

    Article  Google Scholar 

  • Ponnamperuma F N 1984 Effects of flooding on soils; Flooding and Plant Growth 10 45.

    Google Scholar 

  • Qadir M and Schubert S J 2002 Degradation processes and nutrient constraints in sodic soils; Land Degrad. Dev. 13(4) 275–294.

    Article  Google Scholar 

  • Radloff K A, Zheng Y, Michael H A, Stute M, Bostick B C, Mihajlov I, Bounds M, Huq M R, Choudhury I, Rahman M W and Schlosser P 2011 Arsenic migration to deep groundwater in Bangladesh influenced by adsorption and water demand; Nat. Geosci. 4(11) 793–798.

    Article  CAS  Google Scholar 

  • Rahman A, Mondal N C and Fauzia F 2021 Arsenic enrichment and its natural background in groundwater at the proximity of active floodplains of Ganga River, northern India; Chemosphere 265 129096.

    Article  CAS  Google Scholar 

  • Randall S R, Sherman D M and Ragnarsdottir K V 2001 Sorption of As(V) on green rust (Fe4(II)Fe2(III)(OH)12SO4·3H2O) and lepidocrocite (γ-FeOOH): Surface complexes from EXAFS spectroscope; Geochim. Cosmochim. Acta 65(7) 1015–1023.

    Article  CAS  Google Scholar 

  • Ravenscroft P, Burgess W G, Ahmed K M, Burren M and Perrin J 2005 Arsenic in groundwater of the Bengal Basin, Bangladesh: Distribution, field relations, and hydrogeological setting; Hydrogeol. J. 13 727–751.

  • Roberts L C, Hug S J, Dittmar J, Voegelin A, Kretzschmar R, Wehrli B, Cirpka O A, Saha G C, Ashraf Ali M and Badruzzaman A B 2010 Arsenic release from paddy soils during monsoon flooding; Nat. Geosci. 3(1) 53–59.

    Article  CAS  Google Scholar 

  • Roberts L C, Hug S J, Ruettimann T, Billah M M, Khan A W and Rahman M T 2004 Arsenic removal with iron (II) and iron (III) in waters with high silicate and phosphate concentrations; Environ. Sci. Technol. 38(1) 307–315.

    Article  CAS  Google Scholar 

  • Robertson F N 1986 Occurrence and solubility controls of trace elements in groundwater in alluvial basins of Arizona. Regional Aquifer Systems of the United States, Southwest Alluvial Basins of Arizona; Am. Water Resour. Assoc. Monogr. Ser. 7 69–80.

    Google Scholar 

  • Roychowdhury T, Uchino T, Tokunaga H and Ando M 2002 Arsenic and other heavy metals in soils from an arsenic-affected area of West Bengal, India; Chemosphere 49(6) 605–618.

    Article  CAS  Google Scholar 

  • Rudra K 2014 Changing river courses in the western part of the Ganga-Brahmaputra delta; Geomorphology 227 87–100.

    Article  Google Scholar 

  • Sankar M S, Vega M A, Defoe P P, Kibria M G, Ford S, Telfeyan K, Neal A, Mohajerin T J, Hettiarachchi G M, Barua S and Hobson C 2014 Elevated arsenic and manganese in groundwaters of Murshidabad, West Bengal, India; Sci. Total Environ. 488 570–579.

    Article  Google Scholar 

  • Saunders J A, Mohammad S, Korte N E, Lee M K, Fayek M, Castle D and Barnett M O 2005 Groundwater geochemistry, microbiology, and mineralogy in two arsenic-bearing Holocene alluvial aquifers from the United States.

  • Schäffner F, Merten D, Pollok K, Wagner S, Knoblauch S, Langenhorst F and Büchel G 2015 Fast formation of supergene Mn oxides/hydroxides under acidic conditions in the oxic/anoxic transition zone of a shallow aquifer; Environ. Sci. Pollut. Res. 22 19,362–19,375.

    Article  Google Scholar 

  • Schlottmann J L and Breit G N 1992 Mobilization of As and U in the central Oklahoma aquifer, USA; In: Intl. Symp. on Water–Rock Interac., pp. 835–838.

  • Schwertmann U T, Taylor R M, Dixon J B and Weed S B 1989 Minerals in soil environments; In: Soil Sci. Soc. Am. J. Book Series (eds) Dixon J B and Weed S B, Madison, Wisconsin, EUA 379.

  • Sherman D M and Randall S R 2003 Surface complexation of arsenic (V) to iron (III)(hydr) oxides: Structural mechanism from ab initio molecular geometries and EXAFS spectroscopy; Geochim. Cosmochim. Acta 67(22) 4223–4230.

    Article  CAS  Google Scholar 

  • Simunek J, Jacques D, Langergraber G, Bradford S A, Šejna M and van Genuchten M T 2013 Numerical modeling of contaminant transport using HYDRUS and its specialized modules; J. Indian Inst. Sci. 93(2) 265–284.

    Google Scholar 

  • Singh Y P, Raghubanshi B P, Tomar R S, Verma S K and Dubey S K 2014 Soil fertility status and correlation of available macro and micronutrients in Chambal region of Madhya Pradesh; J. Indian Soc. Soil Sci. 62(4) 369–375.

    Google Scholar 

  • Smedley P L and Kinniburgh D G 2002 A review of the source, behaviour and distribution of arsenic in natural waters; J. Appl. Geochem. 17(5) 517–568.

    Article  CAS  Google Scholar 

  • Smith E R, Naidu R and Alston A M 1998 Arsenic in the soil environment: A review; Adv. Agronomy 64 144–195.

    Google Scholar 

  • Standard I 1991 Drinking Water – Specification (First Revision) IS-10500, BIS, New Delhi, India.

  • Standard-IS I, 2720 (Part III, Sec 1) 1980 Method of test for soils, determination of specific gravity, section 1 fine grain soil; New Delhi, India.

    Google Scholar 

  • Sun X and Doner H E 1998 Adsorption and oxidation of arsenite on goethite; Soil Sci. 163(4) 278–287.

    Article  CAS  Google Scholar 

  • Tan B K, Yong R N and Thomas H R 2006 Leaching column tests on arsenic–soil interactions; In: Advances in unsaturated soil, seepage, and environmental geotechnics, pp. 306–314.

  • Tang X Y, Zhu Y G, Shan X Q, McLaren R and Duan J 2007 The ageing effect on the bio-accessibility and fractionation of arsenic in soils from China; Chemosphere 66(7) 1183–1190.

    Article  CAS  Google Scholar 

  • Uddin M K 2017 A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade; J. Chem. Eng. 308 438–462.

    Article  CAS  Google Scholar 

  • van Geen A, Win K H, Zaw T, Naing W, Mey J L and Mailloux B 2014 Confirmation of elevated arsenic levels in groundwater of Myanmar; Sci. Total Environ. 478 21–24.

    Article  Google Scholar 

  • Van Lierop W 1990 Soil pH and lime requirement determination; Commun. Soil Sci. Plant Anal. 3 73–126.

    Google Scholar 

  • Vega M A, Kulkarni H V, Johannesson K H, Taylor R J and Datta S 2020 Mobilization of co-occurring trace elements (CTEs) in arsenic contaminated aquifers in the Bengal basin; Appl. Geochem. 122 104709.

    Article  CAS  Google Scholar 

  • Walkley A and Black I A 1934 An examination of the Degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method; Soil Sci. 37(1) 29–38.

    Article  CAS  Google Scholar 

  • Weber F A, Hofacker A F, Voegelin A and Kretzschmar R 2010 Temperature dependence and coupling of iron and arsenic reduction and release during flooding of a contaminated soil; Environ. Sci. Technol. 44(1) 116–122.

    Article  CAS  Google Scholar 

  • World Health Organization, Geneva 2011; Guidelines for drinking-water quality: WHO G 216 303–304.

  • Wood W 1976 Guidelines for collection and field analysis of groundwater samples for selected unstable constituents.

  • Xie X, Wang Y, Li J, Yu Q, Wu Y, Su C and Duan M 2015 Effect of irrigation on Fe(III)–SO42 redox cycling and arsenic mobilization in shallow groundwater from the Datong basin, China: Evidence from hydrochemical monitoring and modeling; J. Hydrol. 523 128–138.

    Article  CAS  Google Scholar 

  • Xie X, Wang Y, Su C, Li J and Li M 2012 Influence of irrigation practices on arsenic mobilization: Evidence from isotope composition and Cl/Br ratios in groundwater from Datong Basin, northern China; J. Hydrol. 424 37–47.

    Article  Google Scholar 

  • Yost J L and Hartemink A E 2019 Soil organic carbon in sandy soils: A review; Adv. Agron. 158 217–310.

    Article  Google Scholar 

  • Zaini M A, Okayama R and Machida M 2009 Adsorption of aqueous metal ions on cattle-manure-compost based activated carbons; J. Hazard. Mater. 170(2–3) 1119–1124.

    Article  CAS  Google Scholar 

  • Zang X, Wang X, Yue Z, Zhou Z, Zhang T and Ding C 2022 Double-edged effects of elevating temperature on the aging of exogenous arsenic in flooded paddy soils; J. Environ. Manage. 316 115336.

    Article  CAS  Google Scholar 

  • Zang X, Zhou Z, Zhang T, Wang X and Ding C 2021 Aging of exogenous arsenic in flooded paddy soils: Characteristics and predictive models; Environ. Pollut. 274 116561.

    Article  CAS  Google Scholar 

  • Zarcinas B A, Ishak C F, McLaughlin M J and Cozens G 2004 Heavy metals in soils and crops in Southeast Asia: 1. Peninsular Malaysia; Environ. Geochem. Health 26 343–357.

    Article  CAS  Google Scholar 

  • Zarcinas B A, McLaughlin M J and Smart M K 1996 The effect of acid digestion technique on the performance of nebulization systems used in inductively coupled plasma spectrometry; Commun. Soil Sci. Plant Anal. 27(5–8) 1331–1354.

    Article  CAS  Google Scholar 

  • Zeng W, Xu C, Wu J and Huang J 2014 Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis; J. Arid Land 6 44–58.

    Article  Google Scholar 

  • Zhang H and Selim H M 2008 Reaction and transport of arsenic in soils: Equilibrium and kinetic modeling; Adv. Agron. 98 45–115.

    Article  CAS  Google Scholar 

  • Zhang L, Qin X, Tang J, Liu W and Yang H 2017 Review of arsenic geochemical characteristics and its significance on arsenic pollution studies in karst groundwater, Southwest China; Appl. Geochem. 77 80–88.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the anonymous reviewers for their efforts to enhance the quality of the article.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study's conception and design. Material preparation, data collection and analysis were performed by Rhitwik Chatterjee, Rupal Sinha, Shraddha Bharti and Ujjal Mal. The first draft of the manuscript was written by Rhitwik Chatterjee and was edited by Prof Kalyan Adhikari. Prof Kalyan Adhikari supervised the entire research and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Kalyan Adhikari.

Additional information

Communicated by Ramananda Chakrabarti

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, R., Adhikari, K., Sinha, R. et al. Arsenic contamination in groundwater of moribund delta of Bengal basin: Quantitative assessment through adsorption kinetics and contaminant transport modelling. J Earth Syst Sci 133, 86 (2024). https://doi.org/10.1007/s12040-024-02275-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12040-024-02275-6

Keywords

Navigation