Skip to main content
Log in

Long-distance transporters of inorganic nutrients in plants

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

In plants, long-distance transport of inorganic nutrients is important for mineral nutrition, ion homeostasis, nutrient recycling, and the detoxification of toxic or excess inorganic ions. Here, we review information on the transporters involved in the loading/unloading of inorganic nutrients to and from the vascular bundle. We also describe the methods used to obtain such information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Ache P, Becker D, Deeken R, Dreyer I, Weber H, Fromm J, Hedrich R (2001) VFK1, aVicia faba K+ channel involved in phloem unloading. Plant J 27(6): 571–580

    Article  PubMed  CAS  Google Scholar 

  • Berthomieu R Conéjéro G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Véry A-A, Sentenac H, Casse F. (2003) Functional analysis of AtHKT1 inArabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22(9): 2004–2014

    Article  PubMed  CAS  Google Scholar 

  • Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem 280(22): 21437–21443

    Article  PubMed  CAS  Google Scholar 

  • Conklin DS, McMaster JA, Culbertson MR, Kung C (1992) COT1, a gene involved in cobalt accumulation in. Mol Cell Biol 12(9): 3678–3688

    PubMed  CAS  Google Scholar 

  • Curie C, Panaviene Z, Loulergue C, Dellaporta SL, Briat J-F, Walker EL (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409: 346–349

    Article  PubMed  CAS  Google Scholar 

  • Dancis A, Yuan DS, Haile D, Askwith D, Eide D, Moehle C, Kaplan J, Klausner RD (1994) Molecular characterization of a copper transport protein in.: An unexpected role for copper in iron transport. Cell 76: 393–402

    Article  PubMed  CAS  Google Scholar 

  • Davenport RJ, Muòoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem inArabidopsis. Plant Cell Environ 30: 497–507

    Article  PubMed  CAS  Google Scholar 

  • Gaymard F, Pilot G, Lacombe B, Bouchez D, Bruneau D, Boucherez J, Michaux-Ferrière N, Thibaud J-B, Sentenac H (1998) Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94: 647–655

    Article  PubMed  CAS  Google Scholar 

  • Gilliham M, Tester M (2005) The regulation of anion loading to the maize root xylem. Plant Physiol 137: 819–828

    Article  PubMed  CAS  Google Scholar 

  • Grusak MA (2002) Enhancing mineral content in plant food products. J Amer Col Nut 21: 178S-183S

    Google Scholar 

  • Hahnenberger KM, Jia Z, Young PG (1996) Functional expression of theSchizosaccharomyces pombe Na+/H+ antiporter gene, sod1, inSaccharomyces cerevisiae. Proc Natl Acad Sci USA 93: 5031–5036

    Article  PubMed  CAS  Google Scholar 

  • Hamburger D, Rezzonico E, Petétot JM-C, Somerville C, Poirier Y (2002) Identification and characterization of the arabidopsis PHO1 gene involved in phosphate loading to the xylem. Plant Cell 14: 889–902

    Article  PubMed  CAS  Google Scholar 

  • Hussian D, Haydon MJ, Wang Y, Wong E, Sherson SM, Young J, Camakaris J, Harper JF, Cobett CS (2004) P-type ATPase Heavy metal transporter with roles in essential zinc homeostasis inArabidopsis. Plant Cell 16: 1327–1339

    Article  Google Scholar 

  • Jean ML, Schikora A, Mari S, Briat J-F, Curie C (2005) A loss-of-function mutation in AtYSL1 reveals its role in iron and nicotianamine seed loading. Plant J 44: 769–782

    Article  PubMed  Google Scholar 

  • Jeschke D, Pate JS (1991) Cation and chloride partitioning through xylem and phloem within the whole plant ofRicinus communis L. under conditions of salt stress. J Exp Bot 42: 1105–1116

    Article  CAS  Google Scholar 

  • Kamizono A, Nishizawa M, Teranishi Y, Murata K, Kimura A (1989) Identification of a gene conferring resistance to zinc and cadmium ions in the yeastSaccharomyces cerevisiae. Mol Gen Genet 219(1–2): 161–167

    PubMed  CAS  Google Scholar 

  • Kim SA, Punshon T, Lanzirotti A, Li L, AlonsoJM, Ecker JR, Kaplan J, Guerinot ML (2006) Localization of iron inArabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314: 1295–1298

    Article  PubMed  CAS  Google Scholar 

  • Köhler B, Wegner LH, Osipov V, Raschke K (2002) Loading of nitrate into the xylem: Apoplastic nitrate controls the voltage dependence of X-QUAC, the main anion conductance in xylem-parenchyma cells of barley roots. Plant J 30(2): 133–142

    Article  PubMed  Google Scholar 

  • Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2004) OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem. Plant J 39: 415–424

    Article  PubMed  CAS  Google Scholar 

  • Larsen PB, Geisler MJ, Jones CA, Williams KM, Cancel JD (2005) ALS3 encodes a phloem-localized ABC transporter-like protein that is required for aluminum tolerance inArabidopsis. Plant J 41:353–363

    Article  PubMed  CAS  Google Scholar 

  • MaJF, Tamai K, Ichii M, Wu GF (2002) A rice mutant defective in Si uptake. Plant Physiol 130: 2111–2117

    Article  Google Scholar 

  • Ma JF, Mitani N, Nagao S, Konishi S, Tamai K, Iwashita T, Yano M (2004) Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol 136: 3284–3289

    Article  PubMed  CAS  Google Scholar 

  • MaJF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440: 668–691

    Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448: 209–213

    Article  PubMed  CAS  Google Scholar 

  • Marschner H, Kirkby E, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47: 1255–1263

    CAS  Google Scholar 

  • Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/ root/ Na+ distribution and bifurcating salt sensitivity inArabidopsis by genetic disruption of the Na+ transporterAtHKT1. FEBS Lett 531: 157–161

    Article  PubMed  Google Scholar 

  • Mills RF, Francini A, Rocha PF, Baccarini PJ, Aylett M, Krijger GC, Williams LE (2005) The plant P1B-type ATPase AtHMA4 transports Zn and Cd and plays a role in detoxification of transition metals supplied at elevated levels. FEBS Lett 579: 783–791

    Article  PubMed  CAS  Google Scholar 

  • Miwa K, Takano J, Fujiwara F (2006) Improvement of seed yields under boron-limiting conditions through overexpression of BOR1, a boron transporter for xylem loading, inArabidopsis thaliana. Plant J 46: 1084–1091

    Article  PubMed  CAS  Google Scholar 

  • Noguchi K, Yasumori M, Imai T, Naito S, Matsunaga T, Oda H, Hayashi H, Chino M, Fujiwara T (1997) bor1-1, anArabidopsis thaliana mutant that requires a high level of boron. Plant Physiol 115: 901–906

    Article  PubMed  CAS  Google Scholar 

  • Poirier Y, Thoma S, Somerville C, Schiefelbein J (1991) A mutant of arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97: 1087–1093

    Article  PubMed  CAS  Google Scholar 

  • Qiu Q-S, Guo Y, Dietrich MA, Schumaker KS, Zhu J-K (2002) Regulation of SOS1, a plasma membrane Na+-H+ exchanger inArabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99(12): 8436–8441

    Article  PubMed  CAS  Google Scholar 

  • Quintero FJ, Ohta M, Shi H, Zhu J-K, Pardo JM (2002) Reconstitution in yeast of theArabidopsis SOS signaling pathway for Na+ homeostasis, Proc Natl Acad Sci USA 99(13): 9061–9066

    Article  PubMed  CAS  Google Scholar 

  • Rensing C, Mitra B, Rosen BP (1997) ThezntA gene ofEscherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94: 14326–14331

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Quintero FJ, Pardo JM, Zhu J-K (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long distance Na+ transport in plants. Plant Cell 14: 465–477

    Article  PubMed  CAS  Google Scholar 

  • Shi H, Lee B-H, Wu S-J, Zhu J-K (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance inArabidopsis thaliana. Nat Biotech 21: 81–85

    Article  CAS  Google Scholar 

  • Song W-Y, Sohn EJ, Martinoia E, Lee YJ, Yang, Y-Y, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotech 21 (8): 914–919

    Article  CAS  Google Scholar 

  • Sunarpi, Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan W-Y, Leung H-Y, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44: 928–938

    Article  PubMed  CAS  Google Scholar 

  • Szczypka MS, Wemmie JA, Moye-Rowley WS, Thiele DJ (1994) A yeast metal resistance protein similar to human Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and multidrug resistance-associated protein. J Biol Chem 9: 22853–22857

    Google Scholar 

  • Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotianamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15: 1263–1280

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Noguchi K, Yasumori M, Kobayashi M, Gajdos Z, Miwa K, Hayashi H, Yoneyama T, Fujiwara T (2002)Arabidopsis boron transporter for xylem loading. Nature 420: 337–340

    Article  PubMed  CAS  Google Scholar 

  • Takano J, Miwa K, Yuan L, Wirén N, Fujiwara T (2005) Endocytosis and degradation of BOR1, a boron transporter ofArabidopsis thaliana, regulated by boron availability. Proc Natl Acad Sci USA 102(34): 12276–12281

    Article  PubMed  CAS  Google Scholar 

  • Verret F, Gravot A, Auroy P, Leonhardt N, David P, Nussaume L, Vavasseur A, Richaud P (2004) Overexpression of AtHMA4 enhances root-to-shoot translocation of zinc and cadmium and plant metal tolerance. FEBS Lett 576: 306–312

    Article  PubMed  CAS  Google Scholar 

  • Wirén N, Mori S, Marschner H, Romheld V (1994) Iron inefficiency in maize mutant ysl (Zea mays L. cv Yellow-Stripe) is caused by a defect in uptake of iron phytosiderophores. Plant Physiol 106: 71–77

    Google Scholar 

  • Wu S-J, Ding L, Zhu J-K (1996) SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8: 617–627

    Article  PubMed  CAS  Google Scholar 

  • Zhu J-K, Liu J, Xiong L (1998) Genetic analysis of salt tolerance inArabidopsis: Evidence for a critical role of potassium nutrition. Plant Cell 10: 1181–1191

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsook Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, J., Kim, YY., Martinoia, E. et al. Long-distance transporters of inorganic nutrients in plants. J. Plant Biol. 51, 240–247 (2008). https://doi.org/10.1007/BF03036122

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF03036122

Keywords

Navigation