Skip to main content

Advertisement

Log in

Assessment of the Salinization Process at the Coastal Area with Hydrogeochemical Tools and Geographical Information Systems (GIS): Selçuk Plain, Izmir, Turkey

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

The salinization process was investigated with hydrogeochemical tools to evaluate the origin of salinity in the Selçuk Plain. Na/Cl and Cl/Br molar ratios of coastal zone that covers an alluvial aquifer, karstic discharges, and a wetland are similar to the local seawater ratio. According to mixing ratios, seawater addition can reach 9–18% in both seasons at the coastal zone especially in karstic springs that are a kind of seawater–freshwater mixing points. A thematic map of the Salinization zone was constructed for the Selçuk Plain using geographical information system tools with different parameters such as major ion ratios, EC values, mixing ratios, and sodium adsorption ratio values. High correlation between Cl and Br, B, Li and Sr explains the salinization process that comes from marine intrusion. The δ 18O and δD composition of water samples varies between −6.7‰ and −2.9‰; −37‰ and −20‰, respectively. The coastal zone waters are plotted on the mixing line due to the effects of the salinization process in the plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams, T. D., Hayenes, J. R., & Walker, C. T. (1965). Boron in Holocene illites of the Dovey Estuary, Wales, and its relationship to paleosalinity in cyclothems. Sedimentology, 43, 189–l95.

    Article  Google Scholar 

  • Andreasen, D. C., & Fleck, W. B. (1997). Use of bromide: chloride ratio to differentiate potential sources of chloride in a shallow, unconfined aquifer affected by brackish-water intrusion. Hydrogeology Journal, 5(2), 17–26. doi:10.1007/s100400050104.

    Article  Google Scholar 

  • Appelo, C. A. J. (1994). Cation and proton exchange, pH variations, and carbonate reactions in a freshening aquifer. Water Resources Research, 30(10), 2793–2805. doi:10.1029/94WR01048.

    Article  CAS  Google Scholar 

  • Appelo, C. A. J., & Postma, D. (1993). Geochemistry, groundwater pollution p. 536. Rotterdam: Balkema.

    Google Scholar 

  • Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture, FAO Irrigation and Drainage Paper No. 29, Rev. 1, U. N. Food and Agriculture Organization, Rome.

  • Back, W., Hanshaw, B. B., Pyle, T. E., Plummer, L. N., & Weidie, A. E. (1979). Geochemical significance of groundwater discharge and carbonate solution to the formation of Caleta Xel Ha, Quintana Roo, México. Water Resources Research, 15(6), 1521–1535. doi:10.1029/WR015i006p01521.

    Article  CAS  Google Scholar 

  • Beaucaire, C., Gassama, N., Tresonne, N., & Louvat, D. (1999). Saline groundwaters in the hercynian granites (Chardon Mine, France): geochemical evidence for the salinity origin. Applied Geochemistry, 14, 67–84. doi:10.1016/S0883-2927(98)00034-1.

    Article  CAS  Google Scholar 

  • Booth, B., & Mitchell, A. (1999). Getting started with ArcGIS™, ESRI, Redlands, CA.

  • Brondi, M., Dall’aglio, M. D., & Vitrano, F. (1973). Lithium as pathfinder element in the large scale hydrochemical exploration for hydrothermal systems. Geothermics, 283, 142–153.

    Article  Google Scholar 

  • Brondi, M., Fidelibus, M. D., Gragnani, R., & Tulipano, L. (1983). Hydrochemical study and distribution of some trace elements in the most important coastal springs and groundwater of the Ž. Apulian Region Southern Italy. Geologia Applicatta et Hidrogeologia, XVII II, 65–80.

    Google Scholar 

  • Candan, O., & Dora, O. (1998). Menderes Masifinde Granulit, Eklojit ve Mavi Sist Kalintilari: Pan-Afrikan ve Tersiyer Metamorfik Evrimine Bir Yaklasim. Türkiye Jeoloji Bulteni, 41(1), 1–35.

    Google Scholar 

  • Candan, O., Dora, O., Oberhansli, M., Çetinkaplan, M., Partzsch, J. H., Warkus, F. C., et al. (2001). Pan-African high-pressure metamorphism in the Precambrian basement of the Menderes Massif, western Anatolia, Turkey. International Journal of Earth Sciences, 89, 793–811. doi:10.1007/s005310000097.

    Article  CAS  Google Scholar 

  • Carnoda, A., Carillo-Rivera, J. J., Huizar-Alvarez, R., & Graniel-Castro, E. (2004). Salinization in coastal aquifers of arid zones: an example from Santo Domingo, Baja California sur, Mexico. Environmental Geology, 45, 350–366. doi:10.1007/s00254-003-0874-2.

    Article  Google Scholar 

  • Çetinkaplan, M. (2002). Tertiary High Pressure/Low Temperature Metamorphism in the Mesozoic Cover Series of the Menderes Massif and Correlation with the Cycladic Crystalline Complex. PhD Thesis, Dokuz Eylul Universitesi Fen Bilimleri Enstitusu, İzmir (Unpublished).

  • Chambers, L. A., Bartleym, J. G., & Herczeg, A. L. (1996). Hydrogeochemical evidence for surface water recharge to a shallow regional aquifer in northern Victoria. Aust. Journal of Hydrology (Amsterdam), 181, 63–83. doi:10.1016/0022-1694(95)02919-2.

    Article  CAS  Google Scholar 

  • Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. New York: Lewis.

    Google Scholar 

  • Constantin Gogu, R., Carabin, G., Hallet, V., Peters, V., & Dassargues, A. (2001). GIS-based hydrogeological databases and groundwater modelling. Hydrogeology Journal, 9, 555–569. doi:10.1007/s10040-001-0167-3.

    Article  Google Scholar 

  • Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703. doi:10.1126/science.133.3465.1702.

    Article  CAS  Google Scholar 

  • Cruz, J. V., & Silva, M. O. (1999). Groundwater salinization in Pico Island (Azores, Portugal): origin and mechanisms. Environmental Geology, 39(10), 1181–1189. doi:10.1007/s002540000109.

    Article  Google Scholar 

  • Custodio, E. (1987). Hydrogeochemistry and tracers in ground-water problems in coastal areas. Studies and Reports in Hydrology, 45, 213–269 UNESCO.

    Google Scholar 

  • DSI. (1973). Küçük Menderes Ovası Hidrojeolojik Etüt Raporu. Devlet Su Isleri Gn. Md. Jeoteknik Hizmetler ve Yeralti Sulari Dair. Bsk, Ankara (In Turkish).

  • DSI. (1990). İzmir-Selçuk-Pamucak Ovası ve Çevresi Ön Hidrojeolojik Etud raporu. DSI – İzmir Şb (In Turkish).

  • Eastman, R. (1999). IDRISI KILIMANJARO technical reference. Worcester, MA: Clark University.

    Google Scholar 

  • EPA. (1986). Quality Criteria for Water. EPA 440/5-86-001.

  • ESRI. (2006). Environmental Systems Research Institute, from www.esri.com.

  • Fabrika-Martin, J. T., Whittemore, D. O., Davis, S. N., Kubik, P. K., & Sharma, P. (1991). Geochemistry of halogens in the Milk River aquifer, Alberta Canada. Applied Geochemistry, 6, 447–464. doi:10.1016/0883-2927(91)90044-P.

    Article  Google Scholar 

  • Fakir, Y. (2002). Some hydrogeological aspects of the Plioquaternary aquifer in the Sahel between Beddouza cape and Oualidia (Province of Safi-Morocco). Bull Hydroge´ol., 19.

  • Faye, S., Maloszewski, P., Stichler, W., Trimborn, P., Faye, S. C., & Gaye, C. B. (2004). Groundwater salinization in the Saloum (Senegal) delta aquifer: minor elements and isotopic indicators. Science of the Total Environment.

  • Fidelibus, M. D., & Tulipano, L. (1986). Mixing phenomena owing to sea water intrusion for the interpretation of chemical and isotopic data of discharge waters in the Apulian coastal carbonate aquifer (Southern Italy). In R. H. Boekelman, et al. (Ed.), Proc 9th Salt Water Intrusion Meet (SWIM) (pp. 591–600). The Netherlands: Water Management Group, Department of Civil Engineering, Delft University of Technology.

    Google Scholar 

  • Fontes, J. C., & Matray, J. M. (1993). Geochemistry and origin of formation brines from the Paris basin, France: 1. Brines associated with triassic salts. Chemical Geology, 109, 149–175. doi:10.1016/0009-2541(93)90068-T.

    Article  CAS  Google Scholar 

  • Gat, J. R., & Gonfiantini, R. (1981). Stable isotope hydrology. Vienna7 International Atomic Energy Agency; 1981. p. 223–40.

  • Gimenez, E. (1994). Caracterizacibn hidrogeoquimica de 10s procesos salinizacibn en el Acuifero Detritico costero de la Plana de Castellbn, Thesis, University of Granada, p389

  • Giménez, E., & Morell, I. (1991). Consideraciones sobre la utilización de iones minoritarios en la caracterización de la intrusión marina. III SIAGA: 401–412

  • Gimenez, E., & Morell, I. (1997). Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellon, Spain). Environmental Geology, 29(1/2), 118–131.

    CAS  Google Scholar 

  • Gonfiantini, R., & Araguás, L. (1988). Los isótopos ambientales en el estudio de la intrusión marina. Simposio Internacional Tecnología de la Intrusión en Acuíferos Costeros. Instituto Geológico y Minero de España, I, 135–190, Almuñécar.

    Google Scholar 

  • Gonfiantini, R., & Simonot, M. (1987). Isotopic investigations of groundwater in the Cul-de-Sac plain, Republic of Haiti. In: Isotope Techniques in Water Resources Development. Vienna: IAEA, pp. 483-504.

  • Goodchild, M. F. (1996). The application of advanced information technology in assessing environmental impacts. In: Corwin DL, Loague K (eds) Applications of GIS to the modelling of non-point source of pollutants in the vadose zone. Soil Sci Soc Am, 48:1–17.

  • Gosselin, D. C., Harvey, F. E., Frost, C., Stotler, R., & Macfarlane, P. A. (2004). Strontium isotope geochemistry of groundwater in the central part of Dakota (Great Plains) aquifer, USA. Applied Geochemistry, 19, 359–377. doi:10.1016/S0883-2927(03)00132-X.

    Article  CAS  Google Scholar 

  • Güngör, T., & Erdoğan, B. (2002). Tectonic significance of mafic volcanic rocks in a Mesozoic sequence of the Menderes Massif, West Turkey. International Journal of Earth Sciences, 91, 386–397, Geol Rundsch, doi:10.1007/s00531-001-0231-1.

    Article  Google Scholar 

  • Heier, K. S., & Billings, G. K. (1970). Lithium. In K. H. Wedepohl (Ed.), Handbook of geochemistry, 2 vol. Berlin: Springer-Verlag.

    Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural waters. US Geological SurveyWater-Supply Paper 2254, 3rd edn. Washington, DC.

  • Herczeg, A. L., Barnes, C. J., Macumber, P. G., & Olley, J. M. (1992). A stable isotope investigation of groundwater-surface water interactions at Lake Tyrell, Victoria Spec issue geochemistry of acid groundwaters. Chemical Geology, 96, 19–32. doi:10.1016/0009-2541(92)90119-P.

    Article  CAS  Google Scholar 

  • Hsissou, Y., Mudry, J., Bouchaou, L., & Chauve, P. (1999). Utilisation du rapport Br/Cl pour de’terminer l’origine de la salinite´ des eaux souterraines: exemple de la plaine du Souss (Maroc). CR Acad Sci Paris, 328, 381–386.

    CAS  Google Scholar 

  • IAH (International Association of Hydrogeologists). (1979). Map of Mineral and Thermal Water of Europe Scale: 1:500,000. IAH, United Kingdom.

  • Kallioras, A., Pliakas, F., Diamantis, I., & Emmanouil, M. (2006). Application of Geographical Information Systems (GIS) for the Management of Coastal Aquifers Subjected to Seawater Intrusion. Journal of Environmental Science & Health. Part A, 41, 2027–2044.

    CAS  Google Scholar 

  • Kara, N. (1997). Selçuk ve cevresinin toprak kaynaklari, sorunlari ve cozum onerileri. I. Uluslararası Gecmisten Günümüze Selçuk Sempozyumu, Selçuk Belediyesi ve Ege Universitesi, İzmir (In Turkish).

  • Kim, Y., Lee, K. S., Koh, D. C., Lee, D. H., Lee, S. G., Park, W. B., et al. (2003). Hydrogeochemical and isotopic evidence of groundwater salinization in a coastal aquifer: a case study in Jeju volcanic island, Korea. Journal of Hydrology (Amsterdam), 270, 282–294. doi:10.1016/S0022-1694(02)00307-4.

    Article  CAS  Google Scholar 

  • Krabbenhoft, D. P., Bowser, C. J., Anderson, M. P., & Valley, J. V. (1990). Estimating groundwater exchange with lakes: 1. The stable isotope mass balance method. Water Resources Research. 26:2445-

    Google Scholar 

  • La Ruffa, G., Panichi, C., Kavouridis, T., Liberopoulou, V., Leontiadis, J., Caprai, A., 1999. Isotope and chemical assessment of geothermal potential of Kos Island\Greece. Geothermics, 28, 205–217.

    Google Scholar 

  • M&E (Metcalf & Eddy Inc.). (2000). Integrated aquifer management plan: final report. Gaza coastal aquifer management program, USAID contract no. 294-C-00-99-00038-00.

  • Marimuthu, S., Reynolds, D. A., & Le Gal La Salle, C. (2005). A field study of hydraulic, geochemical and stable isotope relationships in a coastal wetlands system. Journal of Hydrology, 315, 93–116.

    Article  Google Scholar 

  • Marjoua, A., Olive, P. L., & Jusserand, Q. (1997). Apports des outils chimiques et isotopiques a` l’identification des origines de la salinisation des eaux: cas de la nappe de la Chaouia coˆtie`re (Maroc). Rev Sci Eau., 4, 489–505.

    Google Scholar 

  • Meybeck, M. (1984). Les fleuves et le cycle ge´ochimique des e´le´ments. PhD; Univ Paris VI, France.

  • Mook, W. G. (2001). Environmental isotopes in the hydrological cycle. IHPV, Tech Doc in Hydrology, vol. 39 (1). Paris UNESCO.

  • Morell, I., Medina, J., Pulido-Bosch, A., & Fernandez-Rubio, R. (1986). The use of bromide and strontium as indicators of marine intrusion in the aquifer of Oropesa-Torreblanca. Castellon. Spain. Proc. 9th. Salt Water Intrusion Meeting, Delft, Denmark, 61–72.

  • Nippon, (1996). The Study on Küçük Menderes River Basin Irrigation Project in the Republic of Turkey. Japon International Cooperation Agengy (JICA) and Devlet Su Isleri (DSİ).

  • Nordstrom, D. K., Ball, J. W., Donahoe, R. J., & Whittemore, D. (1989). Groundwater chemistry and water–rock interactions at Stripa. Geochimica et Cosmochimica Acta, 53, 1727–1740.

    Article  CAS  Google Scholar 

  • Petalas, C. P. (1997). Analysis of aquifer systems in the heterogeneous coastal plain of Rhodope Region. PhD. University of Thrace, dept of Civil Engineering, Xanthi. Greece.

  • Petalas, C. P., & Diamantis, I. B. (1999). Origin and distribution of saline groundwaters in the upper Miocene aquifer system, coastal Rhodope area, northeastern Greece. Hydrogeology Journal, 7(3), 305–316.

    Article  Google Scholar 

  • Richter, B. C., & Kreitler, W. C. (1993). Geochemical techniques for identifying sources of groundwater salinization. NY: CRC Press, ISBN: 1-56670-000-0.

    Google Scholar 

  • Ross, R. R., Beljin M. S. (1994). MODRISI: A PC Approach to GIS and Ground-Water Modeling, National Conference on Environmental Problem-Solving with Geographic Information Systems, pp: 60-65, Ohio, USA.

  • Sanches-Martos, F., & Pulido-Bosch, A. (1999). Boron and the origin of salinization in an aquifer in southeast Spain. Surface Geoscience, 328, 751–757.

    Google Scholar 

  • Sanches-Martos, F., Pulido-Bosch, A., Molina-Sanches, L., & Vallejos-Izquierdo, A. (2002). Identification of the origin of salinization in groundwater using minor ions Lower Andarax, (Southeast Spain). The Science of the Total Environment, 297, 43–58.

    Article  Google Scholar 

  • Seçmen, O., & Gemici, Y. (1997). Selçuk (İzmir) civarinin dogal bitki ortusu. I. Uluslararası Gecmisten Günümüze Selçuk Sempozyumu, Selçuk Belediyesi ve Ege Universitesi İzmir Arastirma ve Uygulama Merkezi, İzmir (In Turkish).

  • Somay, M. A., & Filiz, Ş. (2006). Küçük Menderes Nehri kıyı sulak alanının hidrojeokimyasal değerlendirilmesi. Geosound, V: 48–49, 113–127, Adana (In Turkish).

    Google Scholar 

  • Somay, M. A., Gemici, U., & Filiz, S. (2008). Hydrogeochemical investigation of Kücük Menderes River coastal wetland, Selçuk–Izmir, Turkey. Environmental Geology, 55, 149–164. doi:10.1007/s00254-007-0972-7.

    Article  CAS  Google Scholar 

  • Stuyfzand, P. J. (1986). A new classification of groundwater and application to the coastal dune aquifer system in the Netherlands. Proceed. Of the 9th Salt Water Intrusion Meeting, Delft, 641–655.

  • Tadolini, T., & Tulipano, I. (1975). La misura del contenuto in clorobromo e iodo delle acque sotterranee della Penisola Salentina (Italia meridionale) in rapporto alle acque di mare di invasione continentale. In: Proc 39th Conv Int Sulle Acque Sotterranee, Palermo, Italia.

  • Thornthwaite, W. C. (1948). An approach toward a rational classification of climate. Geographical Review, 38, 55–94.

    Article  Google Scholar 

  • Tulipano, L., & Fidelibus, M. D. (1984). Geochemical characteristics of Apulian coastal springs (southern Italy) related to mixing processes of ground waters with seawater having different residence time in to the aquifer. In G. Tsakiris (Ed.), Proceedings, 5th International Conference on Water Resources Planning and Management. Water in the year 2000. Athens.

  • Turner, J. V., Townley, L. R., Rosen, M. R., & Sklash, M. K. (1992). Coupling the spatial distribution of solute concentration and stable isotope enrichments to hydrologic processes in hypersaline paleochannel aquifers. In: Y. K. Kharaka, & A. S. Maest (Eds.) Water-rock interaction, V:1, No: 7 (pp: 217–221). Balkema.

  • Uhlman, K. (1991). The Geochemistry of boron in a landfill monitoring program. Ground Monit Rev., 11, 139–143.

    Article  CAS  Google Scholar 

  • Vengosh, A., & Rosenthal, E. (1994). Saline groundwater in Israel: Its bearing on the water crisis in the country. Journal of Hydrology, 156, 389–430.

    Article  CAS  Google Scholar 

  • Vengosh, A., Spivack, A. J., Artzi, Y., & Ayalon, A. (1996). Boron, strontium and oxygen isotopic constraints on the origin of brackish ground water from the Mediterranean coast, Israel. In: Proc.American Geophysical Union Fall Meet, San Francisco, CA.

  • Vengosh, A., Gill, J., Davisson, M. L., & Hudson, G. B. (2002). A multi-isotope (Br, S, O, H and C) and age dating study of groundwater from Salinas valley, California: hydrochemistry, dynamics and contamination process. Water resources Research, 38(1), 1–17.

    Article  Google Scholar 

  • Yazicigil, H., Karahanoglu, N., Yilmaz, K., Gundogdu, A., Sakiyan, J., Yesilnacar, E., et al. (2000). Investigation and management of the Kucuk Menderes Basin groundwater. Hydrogeology, vol 5. Middle East Technical University, Ankara.

  • Yurtsever, Y. (1983). Models for tracer data analysis. In: Guidebook on nuclear techniques in hydrology. Technical Report. Series no.91, IAEA, Vienna.

Download references

Acknowledgments

This paper forms a part of a PhD study carried out by the first author. This study was financially supported by project no: 03.KB.FEN.057 from Dokuz Eylül University Scientific Research Fund (BAP). The authors would like to thank Dr. Aykut Akgun, Karadeniz Technical University, to introduce to IDRISI and ArcGIS© computer codes. The authors are also greatful to Dr. Richard Wanty and anonymous reviewer for their critical comments and suggestions in the earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melis A. Somay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Somay, M.A., Gemici, Ü. Assessment of the Salinization Process at the Coastal Area with Hydrogeochemical Tools and Geographical Information Systems (GIS): Selçuk Plain, Izmir, Turkey. Water Air Soil Pollut 201, 55–74 (2009). https://doi.org/10.1007/s11270-008-9927-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9927-1

Keywords

Navigation