Skip to main content
Log in

Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas

  • Published:
Water Resources Management Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Droughts can be considered as multidimensional hazardous phenomena characterised by three attributes: severity, duration and areal extent. Conventionally, drought events are assessed for their severity, using drought indices such as SPI (Standardised Precipitation Index), RDI (Reconnaissance Drought Index), PDSI (Palmer Drought Severity Index) and many others. This approach may be extended to incorporate the modelling of an additional dimension, the duration or the areal extent. Since the marginal distributions describing these dimensions of drought are often different, no simple mixed probability distribution can be used for the bivariate frequency analysis. The copula approach seems to be sufficiently general and suitable for this type of analysis. It is the aim of this paper to analyse droughts as two-dimensional phenomena, including drought severity and areal extent. In this paper, the Gumbel-Hougaard copula from the Archimedean family is used for this two-dimensional frequency analysis. Annual data on historical droughts from Eastern Crete are analysed for their severity and areal extent, producing copula-based probability distributions, incorporating Gumbel marginal probability functions. Useful conclusions are derived for estimating the «OR» return period of drought events related to both severity and areal extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Al-Faraj FA, Scholz M, Tigkas D (2014) Sensitivity of surface runoff to drought and climate change: application for shared river basins. Water 6(10):3033–3048

    Article  Google Scholar 

  • Bacchi B, Becciu G, Kottegoda NT (1994) Bivariate exponential model applied to intensities and durations of extreme rainfall. J Hydrol 155(1–2):225–236

    Article  Google Scholar 

  • Bazrafshan J, Nadi M, Ghorbani K (2015) Comparison of empirical copula-based joint deficit index (JDI) and multivariate standardized precipitation index (MSPI) for drought monitoring in Iran. Water Resour Manag 29(6):2027–2044

    Article  Google Scholar 

  • Bonaccorso B, Peres D, Castano A, Cancelliere A (2015) SPI-based probabilistic analysis of drought areal extent in Sicily. Water Resour Manag 29:459–470

    Article  Google Scholar 

  • Chen L, Singh VP, Guo S, Mishra AK, Guo J (2013) Drought analysis using copulas. J Hydrol Eng 18(7):797–808

    Article  Google Scholar 

  • Dalezios NR, Loukas A, Vasiliades L, Liakopoulos E (2000) Severity-duration-frequency analysis of droughts and wet periods in Greece. Hydrol Sci J 45(5):751–769

    Article  Google Scholar 

  • Ganguli P, Reddy J (2012) Risk assessment of droughts in Gujarat using bivariate copulas. Water Resour Manag 26:3301–3327

    Article  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, MacKay RJ (1986) Copules archimédiennes et families de lois bidimensionnelles dont les marges sont données. Can J Stat 14(2):145–159

    Article  Google Scholar 

  • Goel N, Seth S, Chandra S (1998) Multivariate modeling of flood flows. J Hydraul Eng 124(2):146–155

    Article  Google Scholar 

  • Gupta VK, Duckstein L (1975) A stochastic analysis of extreme droughts. Water Resour Res 11(2):221–228

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Huang S, Huang Q, Chang J, Chen Y, Xie Y (2015) Copulas-based drought evolution characteristics and risk evolution in a typical arid and semi-arid region. Water Resour Manag 29(5):1489–1503

    Article  Google Scholar 

  • Kendall DP, Dracup JA (1992) On the generation of drought events using an alternating renewal reward model. Stoch Hydrol Hydraul 6(1):55–68

    Article  Google Scholar 

  • Khalili D, Farnoud T, Jamshidi H, Kamgar-Haghighi AA, Zand-Parsa S (2011) Comparability analyses of the SPI and RDI meteorological drought indices in different climatic zones. Water Resour Manag 25(6):1737–1757

    Article  Google Scholar 

  • Kousari MR, Dastorani MT, Niazi Y, Soheili E, Hayatzadeh M, Chezgi J (2014) Trend detection of drought in arid and semi-arid regions of Iran based on implementation of reconnaissance drought index (RDI) and application of non-parametrical statistical method. Water Resour Manag 28(7):1857–1872

  • McKee TB, Doesken NJ, Kleist J (1993) The relationship of drought frequency and duration to time scale. Proceedings of the Eighth Conference on Applied Climatology, American Meteorological Society Anaheim (CA), 17–22 January 1993, AMS, pp. 179–184

  • Mishra AK, Singh VP (2011) Drought modelling - a review. J Hydrol 403(1–2):157–175

    Article  Google Scholar 

  • Nelsen RB (1999) An introduction to copulas. Springer-Verlag, Berlin - New York

    Book  Google Scholar 

  • Palmer WC (1965) Meteorological Drought. US Department of Commerce, Weather Bureau, Research Paper No. 45, Washington DC

  • Reddy MJ, Singh VP (2014) Multivariate modeling of droughts using copulas and meta-heuristic methods. Stoch Env Res Risk A 28(3):475–489

  • Rossi G, Benedini M, Tsakiris G, Giakoumakis S (1992) On regional drought estimation and analysis. Water Resour Manag 6(4):249–277

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegada NT, Rosso R (2007) Extremes in Nature. An approach Using Copulas. Water Science and Technology Library, Springer, vol. 56

  • Serinaldi F, Bonaccorso B, Cancelliere A, Grimaldi S (2009) Probabilistic characterization of drought properties through copulas. Phys Chem Earth 34(10–12):596–605

    Article  Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20:795–815

    Article  Google Scholar 

  • Shiau JT, Modarres R (2009) Copula-based drought severity-duration-frequency analysis in Iran. Meteorol Appl 16(4):481–489

  • Shokoohi A, Morovati R (2015) Basinwide comparison of RDI and SPI within an IWRM framework. Water Resour Manag 29(6):2011–2026

    Article  Google Scholar 

  • Singh K, Singh VP (1991) Derivation of bivariate probability density functions with exponential marginals. Stoch Hydrol Hydraul 5(1):55–68

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Statist Univ Paris 8:229–231 (in French)

    Google Scholar 

  • Song S, Singh VP (2010a) Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stoch Environ Res Risk Assess 24(5):783–805

    Article  Google Scholar 

  • Song S, Singh VP (2010b) Metaelliptical copulas for drought frequency analysis of periodic hydrologic data. Environ Res Risk Assess 24(3):425–444

    Article  Google Scholar 

  • Tigkas D, Vangelis H, Tsakiris G (2015) DrinC: a software for drought analysis based on drought indices. Earth Sci Inf 8(3):697–709

    Article  Google Scholar 

  • Todisco F, Mannocchi F, Vergni L (2013) Severity–duration–frequency curves in the mitigation of drought impact: an agricultural case study. Nat Hazards 65(3):1863–1881

  • Tsakiris G (2008) Uni-dimensional analysis of droughts for management decisions. European Water 23-24:3–11

    Google Scholar 

  • Tsakiris G, Vangelis H (2004) Towards a drought watch system based on spatial SPI. Water Resour Manag 18(1):1–12

    Article  Google Scholar 

  • Tsakiris G, Vangelis H (2005) Establishing a drought index incorporating evapotranspiration. European Water 9-10:3–11

    Google Scholar 

  • Tsakiris G, Pangalou D, Tigkas D, Vangelis H (2007a) Assessing the Areal Extent of Drought. Proceedings of EWRA Symposium “Water Resources Management: New Approaches and Technologies”, Chania - Greece, 14–16 June 2007, pp. 59–66

  • Tsakiris G, Pangalou D, Vangelis H (2007b) Regional drought assessment based on the reconnaissance drought index (RDI). Water Resour Manag 21(5):821–833

    Article  Google Scholar 

  • Tsakiris G, Tigkas D, Vangelis H, Pangalou D (2007c) Regional drought identification and assessment. Case study in Crete. In: Rossi G, Vega T, Bonaccorso B (eds) Methods and tools for drought analysis and management. Springer, The Netherlands, pp. 169–191

    Chapter  Google Scholar 

  • Tsakiris G, Tigkas D, Vangelis H (2010) Proactive Management of Water Systems to Face Drought and Water Scarcity in Islands and Coastal Areas of the Mediterranean (PRODIM). In : López-Francos A. (ed), Economics of drought and drought preparedness in a climate change context. Option s Méditerranéennes: Série A. n. 95, CIHEAM, Zaragoza pp. 335–339

  • Tsakiris G, Nalbantis I, Vangelis H, Verbeiren B, Huysmans M, Tychon B, Jacquemin I, Canters F, Vanderhaegen S, Engelen G, Poelmans L, De Becker P, Batelaan O (2013) A system-based paradigm of drought analysis for operational management. Water Resour Manag 27(15):5281–5297

    Article  Google Scholar 

  • Tsakiris G, Kordalis N, Tsakiris V (2015) Flood double frequency analysis: 2D-Archimedean copulas vs bivariate probability distributions. Environmental Processes 2(4):705–716

    Article  Google Scholar 

  • Vangelis H, Spiliotis M, Tsakiris G (2011) Drought severity assessment based on bivariate probability analysis. Water Resour Manag 25(1):357–371

    Article  Google Scholar 

  • Vangelis H, Tigkas D, Tsakiris G (2013) The effect of PET method on reconnaissance drought index (RDI) calculation. J Arid Environ 88:130–140

    Article  Google Scholar 

  • Vergni L, Todisco F, Mannocchi F (2015) Analysis of agricultural drought characteristics through a two-dimensional copula. Water Resour Manag 29(8):2819–2835

    Article  Google Scholar 

  • Wei TC, McGuinnes JL (1973) Reciprocal distances squared method. A computer technique for estimating areal precipitation. U.S. Department of Agriculture, ARS-NS-8, pp. 1–23

  • Weiss G (2011) Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study. Comput Stat 26(1):31–54

    Article  Google Scholar 

  • Wilhite DA, Vanyarkho OV (2000) Drought: Pervasive Impacts of a Creeping Phenomenon. In: Drought: A Global Assessment, Vol. I, Wilhite DA (ed), chap 18, Routledge, London, pp 245–255

  • Yue S, Quarda TBMJ, Bobée B, Legendre P, Bruneau P (1999) The Gumbel mixed model for flood frequency analysis. J Hydrol 226(1–2):88–100

    Article  Google Scholar 

  • Yusof F, Hui-Mean F, Suhaila J, Yusof Z (2013) Characterisation of drought properties with bivariate copula analysis. Water Resour Manag 27(12):4183–4207

    Article  Google Scholar 

  • Zarch MAA, Malekinezhad H, Mobin MH, Dastorani MT, Kousari MR (2011) Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Resour Manag 25(13):3485–3504

  • Zelenhastic E, Salvai A (1987) A method of streamflow drought analysis. Water Resour Res 23(1):156–168

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Tsakiris.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsakiris, G., Kordalis, N., Tigkas, D. et al. Analysing Drought Severity and Areal Extent by 2D Archimedean Copulas. Water Resour Manage 30, 5723–5735 (2016). https://doi.org/10.1007/s11269-016-1543-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11269-016-1543-z

Keywords

Navigation