Skip to main content
Log in

Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data

  • Original Paper
  • Published:
Stochastic Environmental Research and Risk Assessment Aims and scope Submit manuscript

Abstract

This study aims to model the joint probability distribution of periodic hydrologic data using meta-elliptical copulas. Monthly precipitation data from a gauging station (410120) in Texas, US, was used to illustrate parameter estimation and goodness-of-fit for univariate drought distributions using chi-square test, Kolmogorov–Smirnov test, Cramer-von Mises statistic, Anderson-Darling statistic, modified weighted Watson statistic, and Liao and Shimokawa statistic. Pearson’s classical correlation coefficient r n , Spearman’s ρ n, Kendall’s τ, Chi-Plots, and K-Plots were employed to assess the dependence of drought variables. Several meta-elliptical copulas and Gumbel-Hougaard, Ali-Mikhail-Haq, Frank and Clayton copulas were tested to determine the best-fit copula. Based on the root mean square error and the Akaike information criterion, meta-Gaussian and t copulas gave a better fit. A bootstrap version based on Rosenblatt’s transformation was employed to test the goodness-of-fit for meta-Gaussian and t copulas. It was found that none of meta-Gaussian and t copulas considered could be rejected at the given significance level. The meta-Gaussian copula was employed to model the dependence, and these results were found satisfactory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC 19(6):716–722

    Article  Google Scholar 

  • Amal SH (2006) Goodness-of-fit for the generalized exponential distribution. http://interstat.statjournals.net/YEAR/2005/articles/0507001.pdf

  • Bárdossy A (2006) Copula-based geostatistical models for groundwater quality parameters. Water Resour Res 42:W11416. doi:10.1029/2005WR004754

    Article  Google Scholar 

  • Bárdossy A, Li J (2008) Geostatistical interpolation using copulas. Water Resour Res 44:W07412. doi:10.1029/2007WR006115

    Article  Google Scholar 

  • Cancelliere A, Salas JD (2004) Drought length properties for periodic-stochastic hydrologic data. Water Resour Res 40:W02503. doi:10.1029/2002WR001750

    Article  Google Scholar 

  • De Michele C, Salvadori G (2003) A generalized Pareto intensity-duration model of storm rainfall exploiting 2-copulas. J Geophys Res 108(D2):4067. doi:10.1029/2002JD002534

    Article  Google Scholar 

  • De Michele C, Salvadori G, Canossi M, Petaccia A, Rosso R (2005) Bivariate statistical approach to check adequacy of dam spillway. J Hydrol Eng 10(1):50–57

    Article  Google Scholar 

  • Dobrić J, Schmid F (2007) A goodness of fit test for copulas based on Rosenblatt’s transformation. Comput Stat Data Anal 51:4633–4642

    Article  Google Scholar 

  • Dupuis DJ (2007) Using copulas in hydrology: benefits, cautions, and issues. J Hydrol Eng 12(4):381–393

    Article  Google Scholar 

  • Evin G, Favre AC (2008) A new rainfall model based on the Neyman–Scott process using cubic copulas. Water Resour Res 44:W03433. doi:10.1029/2007WR006054

    Article  Google Scholar 

  • Fang HB, Fang KT (2002) The meta-elliptical distributions with given marginals. J Multivar Anal 82:1–16

    Article  CAS  Google Scholar 

  • Favre AC, El Adlouni S, Perreault L, Thiémonge N, Bobeé B (2004) Multivariate hydrological frequency analysis using copulas. Water Resour Res 40:W01101. doi:10.1029/2003WR002456

    Article  Google Scholar 

  • Fisher NI, Switzer P (1985) Chi-plots for assessing dependence. Biometrika 72(2):253–265

    Article  Google Scholar 

  • Fisher NI, Switzer P (2001) Graphical assessment of dependence: Is a picture worth 100 tests? Am Stat 55(3):233–239

    Article  Google Scholar 

  • Gebremichael M, Krajewski WF (2007) Application of copulas to modeling temporal sampling errors in satellite-derived rainfall estimates. J Hydrol Eng 12(4):404–408

    Article  Google Scholar 

  • Genest C, Boies JC (2003) Detecting dependence with Kendall plots. Am Stat 57(4):275–284

    Article  Google Scholar 

  • Genest C, Favre AC (2007) Everything you always wanted to know about copula modeling but were afraid to ask. J Hydrol Eng 12(4):347–368

    Article  Google Scholar 

  • Genest C, Favre AC, Béliveau J, Jacques C (2007a) Meta-elliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resour Res 43:W09401. doi:10.1029/2006WR005275

    Article  Google Scholar 

  • Genest C, Rémillard B, Beaudoin D (2007b) Goodness-of-fit tests for copulas: a review and a power study, insurance: mathematics and economics. doi:10.1016/j.insmatheco.2007.10.005

  • González J, Valdés JB (2003) Bivariate drought recurrence analysis using tree ring reconstructions. J Hydrol Eng 8(5):247–258

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006a) Asymmetric copula in multi-variate flood frequency analysis. Adv Water Resour 29(8):1155–1167

    Article  Google Scholar 

  • Grimaldi S, Serinaldi F (2006b) Design hyetograph analysis with 3-copula function. J Hydrol Sci 51(2):223–238

    Article  Google Scholar 

  • Jackson BB (1975) Markov mixture models for drought lengths. Water Resour Res 11(1):64–74

    Article  Google Scholar 

  • Kao SC, Govindaraju RS (2007a) A bivariate rainfall frequency analysis of extreme rainfall with implications for design. J Geophys Res 112:D13119. doi:10.1029/2007JD008522

    Article  Google Scholar 

  • Kao SC, Govindaraju RS (2007b) Probabilistic structure of storm surface runoff considering the dependence between average intensity and storm duration of rainfall events. Water Resour Res 43:W06410. doi:10.1029/2006WR005564

    Article  Google Scholar 

  • Kao SC, Govindaraju RS (2008) Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resour Res 44(2):W02415. doi:10.1029/2007WR006261

    Article  Google Scholar 

  • Kim TW, Valdés JB, Yoo C (2003) Nonparametric approach for estimating return periods of droughts in arid regions. J Hydrol Eng 8(5):237–246

    Article  Google Scholar 

  • Kim TW, Valdés JB, Yoo C (2006) Nonparametric approach for bivariate drought characterization using palmer drought index. J Hydrol Eng 11(2):134–143

    Article  CAS  Google Scholar 

  • Kotz S, Nadarajah S (2001) Some extremal type elliptical distributions. Stat Probab Lett 54:171–182

    Article  Google Scholar 

  • Kuhn G, Khan S, Ganguly AR, Branstetter M (2007) Geospatial–temporal dependence among weekly precipitation extremes with applications to observations and climate model simulations in South America. Adv Water Resour 30(12):2401–2423

    Article  Google Scholar 

  • Lane WL (1979) Applied stochastic techniques (LAST last computer package): user manual, division of planning technical services. USBR, Denver

    Google Scholar 

  • Loáiciga HA (2005) On the probability of droughts: the compound renewal model. Water Resour Res 41:W01009. doi:10.1029/2004WR003075

    Article  Google Scholar 

  • Mathier L, Perreault L, Bobe B, Ashkar F (1992) The use of geometric and gamma-related distributions for frequency analysis of water deficit. Stoch Hydrol Hydraul 6(4):239–254

    Article  Google Scholar 

  • Mishra AK, Singh VP, Desai VR (2008) Drought characterization: a probabilistic approach. Stoch Environ Res Risk Assess. doi:10.1007/s00477-007-0194-2

  • Nadarajah S (2006) Fisher information for the elliptically symmetric Pearson distributions. Appl Math Comput 178:195–206

    Google Scholar 

  • Nadarajah S (2007) A bivariate gamma model for drought. Water Resour Res 43:W08501. doi:10.1029/2006WR005641

    Article  Google Scholar 

  • Nadarajah S, Kotz S (2005) Information matrices for some elliptically symmetric distribution. SORT 29(1):43–56

    Google Scholar 

  • Poulin A, Huard D, Favre AC, Stéphane P (2007) Importance of tail dependence in bivariate frequency analysis. J Hydrol Eng 12(4):394–403

    Article  Google Scholar 

  • Renard B, Lang M (2007) Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Adv Water Resour 30:897–912

    Article  Google Scholar 

  • Salvadori G, De Michele C (2004) Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resour Res 40:W12511. doi:10.1029/2004WR003133

    Article  Google Scholar 

  • Salvadori G, De Michele C (2006) Statistical characterization of temporal structure of storms. Adv Water Resour 29(6):827–842

    Article  Google Scholar 

  • Salvadori G, De Michele C (2007) On the use of copulas in hydrology: theory and practice. J Hydrol Eng 12(4):369–380

    Article  Google Scholar 

  • Salvadori G, De Michele C, Kottegoda NT, Rosso R (2007) Extremes in nature: an approach using copulas. Water Science and Technology Library Series, vol 56, Springer

  • Sen Z (1976) Wet and dry periods of annual flows series. J Hydraul Div 102(10):1503–1514

    Google Scholar 

  • Sen Z (1977) Run-sums of annual flow series. J Hydrol 35(3/4):311–324

    Article  Google Scholar 

  • Serinaldi F, Grimaldi S (2007) Fully nested 3-copula: procedure and application on hydrological data. J Hydrol Eng 12(4):420–430

    Article  Google Scholar 

  • Shiau JT (2003) Return period of bivariate distributed hydrological events. Stoch Environ Res Risk A 17(1/2):42–57

    Article  Google Scholar 

  • Shiau JT (2006) Fitting drought duration and severity with two-dimensional copulas. Water Resour Manag 20:795–815

    Article  Google Scholar 

  • Shiau JT, Shen HW (2001) Recurrence analysis of hydrologic droughts of differing severity. J Water Resour Plann Manag 127(1):30–40

    Article  Google Scholar 

  • Shiau JT, Feng S, Nadarajah S (2007) Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrol Process 21(16):2157–2163

    Article  Google Scholar 

  • Sklar A (1959) Fonctions de repartition án dimensions et leurs marges. **Publications Institut de Statistique de Université de Paris 8:229–231

    Google Scholar 

  • Srinivas VV, Srinivasan K (2000) Post-blackening approach for modeling dependent annual streamflows. J Hydrol 230:86–126

    Article  Google Scholar 

  • Villarini F, Serinaldi G, Krajewski WF (2008) Modeling radar-rainfall estimation uncertainties using parametric and non-parametric approaches. Adv Water Resour 31(2):1674–1686

    Article  Google Scholar 

  • Wong G, Lambert MF, Metcalfe AV (2007) Trivariate copulas for characterisation of droughts. ANZIAM J 49:C306–C323

    Google Scholar 

  • Yevjevich V (1967) An objective approach to definitions and investigations of continental hydrologic droughts: hydrology paper 23. Colorado State University, Fort Collins

    Google Scholar 

  • Zhang G (2000) Multiple complex gauss-Legendre integral formulae and application. J Lanzhou University (Nat Sci) 36(5):30–34

    Google Scholar 

  • Zhang L, Singh VP (2006) Bivariate flood frequency analysis using the copula method. J Hydrol Eng 11(2):150–164

    Article  Google Scholar 

  • Zhang L, Singh VP (2007a) Gumbel-Hougaard copula for trivariate rainfall frequency analysis. J Hydrol Eng 12(4):409–419

    Article  Google Scholar 

  • Zhang L, Singh VP (2007b) Bivariate rainfall frequency distributions using Archimedean copulas. J Hydrol 332:93–109

    Article  Google Scholar 

  • Zhang L, Singh VP (2007c) Trivariate flood frequency analysis using the Gumbel–Hougaard copula. J Hydrol Eng 12(4):431–439

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Science Council, Republic of China (Grant No. NSC-50579065 and NSC-50879070). The authors appreciate Dr. Mehmet Ozger for supplying data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songbai Song.

Appendices

Appendix 1: p-dimensional symmetric elliptical type distributions

A p-dimensional random vector Z is said to have an elliptically contoured distribution (or simply called elliptical distribution or ECD) with parameters μ(p × 1) and ∑(p × p) if it has the stochastic representation (Fang and Fang 2002):

$$ {\mathbf{Z}}\mathop = \limits^{d} {\varvec{\upmu}} + r{\mathbf{Au}} $$
(56)

where r ≥ 0 is a random variable, u is uniformly distributed on the unit sphere in R p and is independent of r, A is a p × p constant matrix such that AA T = ∑ and the sign \( \mathop = \limits^{d} \) means that both sides of the equality have the same distribution. In particular, if r has a density, then the density of Z is of the form

$$ \left| \sum \right|^{{ - \frac{ 1}{ 2}}} {\text{g[(}}{\mathbf{Z}} - {\varvec{\upmu}} )^{\text{T}} \sum^{ - 1} ({\mathbf{Z}} - {\varvec{\upmu}}) ] $$
(57)

where g(·) is a scale function uniquely determined by the distribution of r and is referred to as the density generator. Common p-dimensional symmetric elliptical type distributions are given in Table 1.We use the notation Z ~ EC p (μ, ∑, g). Without loss of generality, we shall consider only the case Z ~ EC p (0, R, g), where

$$ {\mathbf{R}} = \{ \rho_{ij} :\begin{array}{*{20}c} {\rho_{ii} = 1,\begin{array}{*{20}c} {} \\ \end{array} - 1 < \rho_{ij} < 1\begin{array}{*{20}c} {} \\ \end{array} {\text{for}}\begin{array}{*{20}c} {} \\ \end{array} } \\ \end{array} i \ne j,\begin{array}{*{20}c} {} \\ \end{array} \rho_{ij} = \rho_{ji} ;\begin{array}{*{20}c} {} \\ \end{array} i,j = 1,2, \ldots ,p\} $$
(58)

All the marginal distributions of Z have an identical pdf:

$$ q_{g} ({\text{z}}) = \frac{{\pi^{{\frac{p - 1}{2}}} }}{{\Upgamma \left( {\frac{p - 1}{2}} \right)}}\int\limits_{{{\text{z}}^{2} }}^{\infty } {(y - z^{2} )^{{\frac{p - 1}{2} - 1}} g(y){\text{d}}y} $$
(59)

and cdf

$$ Q_{g} ({\text{z}}) = \frac{ 1}{ 2} + \frac{{\pi^{{\frac{p - 1}{ 2}}} }}{{\Upgamma \left( {\frac{p - 1}{ 2}} \right)}}\int\limits_{0}^{z} {\int\limits_{{u^{2} }}^{\infty } {\left( {y - u^{2} } \right)^{{\frac{p - 1}{ 2} - 1}} g(y){\text{d}}y{\text{d}}u} } ;\quad z > 0 $$
(60)

Note q g (z) = q g (−z) and Q g (z) = 1 − Q g (−z) for z > 0 (Kotz and Nadarajah 2001; Nadarajah and Kotz 2005; Nadarajah 2006). Let X = (X 1, X 1,…,X p )T be a random vector with each component X i having a given continuous pdf f i (x i ) and cdf F i (x i ). Let the random vector Z = (Z 1, Z 2,…, Z p )T ~ EC p (0, R, g). Suppose

$$ Z_{i} = Q_{g}^{ - 1} [F_{i} (x_{i} )];\quad i = 1, 2, \ldots ,p $$
(61)

where Q −1 g is the inverse of Q g . Then the density function of X is given by

$$ h(x_{ 1} ,x_{ 2} , \ldots ,x_{p} ) = \phi \{ Q_{g}^{ - 1} [F_{ 1} (x_{ 1} )],Q_{g}^{ - 1} [F_{ 2} (x_{ 2} )] \ldots ,Q_{g}^{ - 1} [F_{p} (x_{p} )]\} \prod\limits_{i = 1}^{p} {f_{i} (x_{i} )} $$
(62)

where ϕ is the p-variant density weight function:

$$ \phi ({\text{z}}_{ 1} ,{\text{z}}_{ 2} , \ldots ,{\text{z}}_{p} ) = \frac{{\left| {\mathbf{R}} \right|^{{ - \frac{ 1}{ 2}}} g({\mathbf{z}}^{\text{T}} \sum^{ - 1} {\mathbf{z}})}}{{\prod\limits_{i = 1}^{p} {q_{g} (z_{i} )} }} $$
(63)

The n-dimensional random vector X is said to have a meta-elliptical distribution, if its density function is given by Eq. 12. Denote X ~ ME p (0, R, g; F 1F 2,…,F p ). The function \( \phi \{ {\text{Q}}_{g}^{ - 1} [F_{1} (x_{1} ),{\text{Q}}_{g}^{ - 1} ]F_{2} (x_{2} ), \ldots ,Q_{g}^{ - 1} F_{p} (x_{p} )\} \) is referred to as the density weighting function (Fang et al. 2002).

Appendix 2: Bivariate meta-Gaussian distribution

A meta-Gaussian distribution with marginal distribution F 1(z 1) and F 2(z2)

$$ C(u,v) = \int\limits_{ - \infty }^{{\Upphi^{ - 1} (u)}} {\int\limits_{ - \infty }^{{\Upphi^{ - 1} (v)}} {\frac{1}{{2\pi \sqrt {1 - \rho^{2} } }}{ \exp }\left[ { - \frac{{s^{2} - 2\rho st + t^{2} }}{{2(1 - \rho^{2} )}}} \right]dsdt} } $$
(64)

where u = F 1(z1), v = F 2(z2); Φ−1(·) is inverse of the normal distribution. Its pdf is

$$ c(u,v) = \frac{1}{{\sqrt {1 - \rho^{2} } }}\frac{{{ \exp }\left\{ { - \frac{{[\Upphi^{ - 1} (u)]^{2} - 2\rho \Upphi^{ - 1} (u)\Upphi^{ - 1} (v) + [\Upphi^{ - 1} (v)]^{2} }}{{2(1 - \rho^{2} )}}} \right\}}}{{{\text{exp}}\left\{ { - \frac{1}{2}\left[ {\Upphi^{ - 1} \left( u \right)} \right]^{2} } \right\}{ \exp }\left\{ { - \frac{1}{2}[\Upphi^{ - 1} (v)]^{2} } \right\}}} $$
(65)

The marginal pdf and cdf of Z are

$$ q_{g} (z) = { \exp }\left( { - \frac{{z^{2} }}{2}} \right) $$
(66)
$$ Q_{g} (z) = \int\limits_{ - \infty }^{z} {{ \exp }\left( { - \frac{{y^{2} }}{2}} \right)dy} $$
(67)

2.1 Bivariate meta-t v distribution

A meta-t v distribution with marginal distribution F 1(z 1) and F 2(z2)

$$ C(u,v) = \int\limits_{ - \infty }^{{t_{\upsilon }^{ - 1} (u)}} {\int\limits_{ - \infty }^{{t_{\upsilon }^{ - 1} (v)}} {\frac{1}{{2\pi \sqrt {1 - \rho^{2} } }}} } \left[ {1 + \frac{{s^{2} - 2\rho st + t^{2} }}{{(1 - \rho^{2} )\upsilon }}} \right]^{{ - \frac{\upsilon + 2}{2}}} dsdt $$
(68)

where u = F 1(z1), v = F 2(z2); \( {\text{t}}_{\upsilon }^{ - 1} \left( \cdot \right) \) is the inverse function for t distribution with υ degrees of freedom. Its pdf is

$$ c(u,v) = \frac{{\Upgamma \left( {\frac{\upsilon + 2}{2}} \right)\Upgamma \left( {\frac{\upsilon }{2}} \right)}}{{\sqrt {1 - \rho^{2} } \left[ {\Upgamma \left( {\frac{\upsilon + 1}{2}} \right)} \right]^{2} }}\frac{{\left\{ {1 + \frac{{\left[ {t_{\upsilon }^{ - 1} (u)} \right]^{2} }}{\upsilon }} \right\}^{{\frac{\upsilon + 1}{2}}} \left\{ {1 + \frac{{\left[ {t_{\upsilon }^{ - 1} (v)} \right]^{2} }}{\upsilon }} \right\}^{{\frac{\upsilon + 1}{2}}} }}{{\left\{ {1 + \frac{{\left[ {t_{\upsilon }^{ - 1} (u)} \right]^{2} - 2\rho t_{\upsilon }^{ - 1} (u)t_{\upsilon }^{ - 1} (v) + \left[ {t_{\upsilon }^{ - 1} (v)} \right]^{2} }}{{(1 - \rho^{2} )\upsilon }}} \right\}^{{\frac{\upsilon + 2}{2}}} }} $$
(69)

The marginal pdf and cdf of Z are:

$$ q_{t} (z) = \frac{{\Upgamma \left( {\frac{\upsilon + 1}{2}} \right)}}{{\sqrt {\pi \upsilon } \Upgamma \left( {\frac{\upsilon }{2}} \right)}}\left( {1 + \frac{{z^{2} }}{\upsilon }} \right)^{{ - \left( {\frac{\upsilon + 1}{2}} \right)}} $$
(70)
$$ Q_{t} (z) = \frac{{\Upgamma \left( {\frac{\upsilon + 1}{2}} \right)}}{{\sqrt {\pi \upsilon } \Upgamma \left( {\frac{\upsilon }{2}} \right)}}\int\limits_{ - \infty }^{z} {\left( {1 + \frac{{y^{2} }}{\upsilon }} \right)^{{ - \left( {\frac{\upsilon + 1}{2}} \right)}} dy} $$
(71)

2.2 Bivariate meta-Cauchy distribution

A meta-Cauchy distribution with marginal distribution F 1(z 1) and F 2(z2)

$$ C(u,v) = \int\limits_{ - \infty }^{{\omega^{ - 1} (u)}} {\int\limits_{ - \infty }^{{\omega^{ - 1} \left( {\text{v}} \right)}} {\frac{1}{{2\pi \sqrt {1 - \rho^{2} } }}\left[ {1 + \frac{{s^{2} - 2\rho st + {\text{t}}^{2} }}{{(1 - \rho^{2} )}}} \right]^{{ - \frac{3}{2}}} dsdt} } $$
(72)

where u = F 1(z1), v = F 2(z2); \( \omega^{ - 1} \left( \cdot \right) \) is inverse function for Cauchy distribution.

$$ c(u,v) = \Upgamma \left( {\frac{1}{2}} \right)\Upgamma \left( {\frac{3}{2}} \right)\frac{{\{ 1 + [\psi^{ - 1} (u)]^{2} \} \{ 1 + [\psi^{ - 1} (v)]^{2} \} }}{{\sqrt {1 - \rho^{2} } \left\{ {1 + \frac{{[\psi^{ - 1} (u)]^{2} + [\psi^{ - 1} (v)]^{2} - 2\rho \psi^{ - 1} (u)\psi^{ - 1} (v)}}{{(1 - \rho^{2} )}}} \right\}^{{{3 \mathord{\left/ {\vphantom {3 2}} \right. \kern-\nulldelimiterspace} 2}}} }} $$
(73)

The marginal pdf and cdf of Z are

$$ q_{c} (z) = \frac{1}{{\pi (1 + z^{2} )}} $$
(74)
$$ Q_{c} (z) = \int\limits_{ - \infty }^{z} {\frac{1}{{\pi \left( {1 + y^{2} } \right)}}dy} = \frac{1}{\pi }{\text{arctg(}}z )+ \frac{1}{2} $$
(75)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, S., Singh, V.P. Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stoch Environ Res Risk Assess 24, 425–444 (2010). https://doi.org/10.1007/s00477-009-0331-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00477-009-0331-1

Keywords

Navigation