Skip to main content
Log in

Mutual-Structure for Joint Filtering

  • Published:
International Journal of Computer Vision Aims and scope Submit manuscript

Abstract

Previous joint/guided filters directly transfer structural information from the reference to the target image. In this paper, we analyze the major drawback—that is, there may be completely different edges in the two images. Simply considering all patterns could introduce significant errors. To address this issue, we propose the concept of mutual-structure, which refers to the structural information that is contained in both images and thus can be safely enhanced by joint filtering. We also use an untraditional objective function that can be efficiently optimized to yield mutual structure. Our method results in important edge preserving property, which greatly benefits depth completion, optical flow estimation, image enhancement, stereo matching, to name a few.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. http://www.cse.cuhk.edu.hk/leojia/projects/mutualstructure.

References

  • Arbeláez, P., Pont-Tuset, J., Barron, J. T., Marques, F., & Malik, J. (2014). Multiscale combinatorial grouping. In CVPR.

  • Carlo, T., & Roberto, M. (1998). Bilateral filtering for gray and color images. In ICCV.

  • Chen, J., Paris, S., & Durand, F. (2007). Real-time edge-aware image processing with the bilateral grid. ACM Transactions on Graphics, 26(3), 103.

    Article  Google Scholar 

  • Criminisi, A., Sharp, T., Rother, C., & Perez, P. (2010). Geodesic image and video editing. ACM Transactions on Graphics, 29(5), 134.

    Article  Google Scholar 

  • Farbman, Z., Fattal, R., Lischinski, D., & Szeliski, R. (2008). Edge-preserving decompositions for multi-scale tone and detail manipulation. ACM Transactions on Graphics, 27(3), 67:1–67:10.

  • Farbman, Z., Fattal, R., & Lischinski, D. (2010). Diffusion maps for edge-aware image editing. ACM Transactions on Graphics, 29(6), 145.

    Article  Google Scholar 

  • Fattal, R. (2009). Edge-avoiding wavelets and their applications. ACM Transactions on Graphics, 28(3), 22:1–22:10.

  • Frédo, D., & Julie, D. (2002). Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics, 21(3), 257–266.

    Google Scholar 

  • Gastal, E. S., & Oliveira, M. M. (2011). Domain transform for edge-aware image and video processing. ACM Transactions on Graphics, 30(4), 69.

    Article  Google Scholar 

  • Gastal, E. S., & Oliveira, M. M. (2012). Adaptive manifolds for real-time high-dimensional filtering. ACM Transactions on Graphics, 31(4), 33.

    Article  Google Scholar 

  • He, K., Sun, J., & Tang, X. (2010). Guided image filtering. In ECCV.

  • Hosni, A., Rhemann, C., Bleyer, M., Rother, C., & Gelautz, M. (2013). Fast cost-volume filtering for visual correspondence and beyond. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(2), 504–511.

    Article  Google Scholar 

  • Krishnan, D., & Fergus, R. (2009). Dark flash photography. ACM Transactions on Graphics, 28(3).

  • Lu, S., Ren, X., & Liu, F. (2014). Depth enhancement via low-rank matrix completion. In CVPR.

  • Ma, Z., He, K., Wei, Y., Sun, J., & Wu, E. (2013). Constant time weighted median filtering for stereo matching and beyond. In ICCV.

  • Paris, S., & Durand, F. (2006). A fast approximation of the bilateral filter using a signal processing approach. In ECCV.

  • Paris, S., Kornprobst, P., Tumblin, J., & Durand, F. (2009). Bilateral filtering: Theory and applications. Foundations and Trends in Computer Graphics and Vision, 4(1), 1–74.

  • Park, J., Kim, H., Tai, Y., Brown, M. S., & Kweon, I. (2011). High quality depth map upsampling for 3d-tof cameras. In ICCV.

  • Petschnigg, G., Szeliski, R., Agrawala, M., Cohen, M., Hoppe, H., & Toyama, K. (2004). Digital photography with flash and no-flash image pairs. ACM Transactions on Graphics, 23(3), 664–672.

    Article  Google Scholar 

  • Raskar, R., Ilie, A., Yu, J. (2004). Image fusion for context enhancement and video surrealism. In NPAR.

  • Rudin, L. I., Osher, S., & Fatemi, E. (1992). Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 60(1), 259–268.

    Article  MATH  MathSciNet  Google Scholar 

  • Scharstein, D., & Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International Journal on Computer Vision, 47(1–3), 7–42.

    Article  MATH  Google Scholar 

  • Shen, X., Xu, L., Zhang, Q., & Jia, J. (2014). Multi-modal and multi-spectral registration for natural images. In ECCV.

  • Shen, X., Zhou, C., Xu, L., & Jia, J. (2015). Mutual-structure for joint filtering. In ICCV, pp 3406–3414.

  • Shih, Y., Paris, S., Durand, F., & Freeman, W. T. (2013). Data-driven hallucination of different times of day from a single outdoor photo. ACM Transactions on Graphics, 32(6), 200:1–200:11.

  • van de Weijer, J., & van den Boomgaard, R. (2001). Local mode filtering. In CVPR.

  • Xiao, J., Cheng, H., Sawhney, H. S., Rao, C., & Isnardi, M. A. (2006). Bilateral filtering-based optical flow estimation with occlusion detection. In ECCV.

  • Xu, L., Jia, J., & Matsushita, Y. (2012a). Motion detail preserving optical flow estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(9), 1744–1757.

    Article  Google Scholar 

  • Xu, L., Yan, Q., Xia, Y., & Jia, J. (2012b). Structure extraction from texture via relative total variation. ACM Transactions on Graphics, 31(6), 139.

  • Yan, Q., Shen, X., Xu, L., Zhuo, S., Zhang, X., Shen, L., & Jia, J. (2013). Cross-field joint image restoration via scale map. In ICCV.

  • Yang, Q. (2012). Recursive bilateral filtering. In ECCV.

  • Yang, Q. (2014). Stereo matching using tree filtering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 37(4), 834–846.

  • Yang, Q., Tan, K. H., & Ahuja, N. (2009). Real-time o(1) bilateral filtering. In CVPR.

  • Zhang, Q., Shen, X., Xu, L., & Jia, J. (2014a). Rolling guidance filter. In ECCV.

  • Zhang, Q., Xu, L., & Jia, J. (2014b). 100+ times faster weighted median filter. In CVPR.

Download references

Acknowledgements

This research is supported by the Research Grant Council of the Hong Kong Special Administrative Region under Grant Number 413113.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Shen.

Additional information

Communicated by Rene Vidal, Katsushi Ikeuchi, Josef Sivic, Christoph Schnoerr.

Appendix: Proof of Claim 4.1

Appendix: Proof of Claim 4.1

Proof

In Eq. (5), \(e(I_p,G_p)\) reaches the minimum when setting the derivatives \(\frac{\partial e(I_p,G_p)^2}{\partial a_p^1}\) and \(\frac{\partial e(I_p,G_p)^2}{\partial a_p^0}\) to zeros, which yields

$$\begin{aligned} a_p^1 = \frac{cov(I_p,G_p)}{\sigma (I_p)}, \quad a_p^0=\overline{G}_p-a_p^1\overline{I}_p, \end{aligned}$$
(26)

where \(\overline{I}_p\) and \(\overline{G}_p\) are the mean intensities of patches centered at p on I and G respectively. By simply substituting \(a_p^1\) and \(a_p^0\) into Eq. (5) and arranging it according to Eq. (1), we obtain

$$\begin{aligned} e(I_p,G_p) = \sigma (G_p)(1-\rho (I_p,G_p)^2), \end{aligned}$$
(27)

as shown in Eq. (6). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, X., Zhou, C., Xu, L. et al. Mutual-Structure for Joint Filtering. Int J Comput Vis 125, 19–33 (2017). https://doi.org/10.1007/s11263-017-1021-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11263-017-1021-y

Keywords

Navigation