Skip to main content

Advertisement

Log in

Scylla serrata reovirus p35 protein expressed in Escherichia coli cells alters membrane permeability

  • Published:
Virus Genes Aims and scope Submit manuscript

Abstract

To promote viral entry, replication, release, and spread to neighboring cells, many cytolytic animal viruses encode proteins responsible for modification of host cell membrane permeability and for formation of ion channels in host cell membranes. Scylla serrata reovirus (SsRV) is a major pathogen that can severely damage mud crab (S. serrata) aquaculture. Protein p35, which is encoded by segment 10 of SsRV, contains two transmembrane domains. In this study, we found that SsRV p35 can induce membrane permeability changes when expressed in Escherichia coli. SsRV p35 expressed in bacterial cells existed as monomers under reducing conditions but formed homodimers and homotrimers under non-reducing conditions. These findings demonstrate that p35 may act as a viroporin; further studies are needed to elucidate the detailed structure–function relationships of this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.G. Chen, J.F. Yang, H. Wang, P.X. Ding, Visualization of reo-like virus infection of cultivated Scylla serrata by electron microscope. J. Mar. Sci. 26, 93–96 (2008)

    Google Scholar 

  2. J. Chen, J. Xiong, J. Yang, Z. Mao, X. Chen, Nucleotide sequences of four RNA segments of a reovirus isolated from the mud crab Scylla serrata provide evidence that this virus belongs to a new genus in the family Reoviridae. Arch. Virol. 156, 523–528 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. J. Chen, J. Xiong, B. Cui, J. Yang, W. Li, Z. Mao, Molecular characterization of eight segments of Scylla serrata reovirus (SsRV) provides the complete genome sequence. Arch. Virol. 157, 1551–1557 (2012)

    Article  CAS  PubMed  Google Scholar 

  4. U.B.R. Balasuriya, S.A. Nadler, W.C. Wilson, L.I. Pritchard, A.B. Smythe, G. Savini, F. Monaco, P. De Santis, N. Zhang, W.J. Tabachnick, N.J. MacLachlan, The NS3 proteins of global strains of bluetongue virus evolve into regional topotypes through negative (purifying) selection. Vet. Microbiol. 126, 91–100 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Z. Han, R.N. Harty, The NS3 protein of bluetongue virus exhibits viroporin-like properties. J. Biol. Chem. 279, 43092–43097 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. J. Arroyo, M. Boceta, M.E. González, M. Michel, L. Carrasco, Membrane permeabilization by different regions of the human immunodeficiency virus type 1 transmembrane glycoprotein gp41. J. Virol. 69, 4095–4102 (1995)

    CAS  PubMed Central  PubMed  Google Scholar 

  7. H.C. Guo, S.Q. Sun, D.H. Sun, Y.Q. Wei, J. Xu, M. Huang, X.T. Liu, Z.X. Liu, J.X. Luo, H. Yin, D.X. Liu, Viroporin activity and membrane topology of classic swine fever virus p7 protein. Int. J. Biochem. Cell Biol. 45, 1186–1194 (2013)

    Article  CAS  PubMed  Google Scholar 

  8. J.M. Hyser, B. Utama, S.E. Crawford, M.K. Estes, Genetic divergence of rotavirus nonstructural protein 4 results in distinct serogroup-specific viroporin activity and intracellular punctate structure morphologies. J. Virol. 86, 4921–4934 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. J. Lama, L. Carrasco, Inducible expression of a toxic poliovirus membrane protein in Escherichia coli. Comparative studies using different expression systems based on T7 promoters. Biochem. Biophys. Res. Commun. 188, 972–981 (1992)

    Article  CAS  PubMed  Google Scholar 

  10. J. Lama, L. Carrasco, Expression of poliovirus nonstructural proteins in Escherichia coli cells. Modification of membrane permeability induced by 2B and 3A. J. Biol. Chem. 267, 15932–15937 (1992)

    CAS  PubMed  Google Scholar 

  11. S. Raghava, K.M. Giorda, F.B. Romano, A.P. Heuck, D.N. Hebert, SV40 late protein VP4 forms toroidal pores to disrupt membranes for viral release. Biochemistry 52, 3939–3948 (2013)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. M. Cserzo, E. Wallin, I. Simon, G. von Heijne, A. Elofsson, Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the dense alignment surface method. Protein Eng. 10, 673–676 (1997)

    Article  CAS  PubMed  Google Scholar 

  13. D.T. Jones, Improving the accuracy of transmembrane protein topology prediction using evolutionary information. Bioinformatics 23, 538–544 (2007)

    Article  CAS  PubMed  Google Scholar 

  14. T. Nugent, D.T. Jones, Transmembrane protein topology prediction using support vector machines. BMC Bioinf. 10, 159 (2009)

    Article  Google Scholar 

  15. K. Hofmann, W. Stoffel, TMbase—a database of membrane spanning proteins segments. Biol. Chem. Hoppe-Seyler 347, 166 (1993)

    Google Scholar 

  16. T. Hessa, H. Kim, K. Bihlmaier, C. Lundin, J. Boekel, H. Andersson, I. Nilsson, S.H. White, G. von Heijne, Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433, 377–381 (2005)

    Article  CAS  PubMed  Google Scholar 

  17. T. Hessa, N.M. Meindl-Beinker, A. Bernsel, H. Kim, Y. Sato, M. Lerch-Bader, I. Nilsson, S.H. White, G. von Heijne, Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450, 1026–1030 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. G. von Heijne, Membrane protein structure prediction. Hydrophobicity analysis and the positive-inside rule. J. Mol. Biol. 225, 487–494 (1992)

    Article  Google Scholar 

  19. K. Nakai, M. Kanehisa, A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14, 897–911 (1992)

    Article  CAS  PubMed  Google Scholar 

  20. Z. Zhang, S.D. Zhu, X.H. Jing, J.F. Yang, J.G. Chen, In vitro expression of Scylla serrata reovirus protein p40 and preparation of monoclonal antibodies against the expressed protein. J. Shanghai Ocean Univ. 23, 487–491 (2014)

    CAS  Google Scholar 

  21. J. Sambrook, D.W. Russell, Molecular Cloning: A Laboratory Manual, 3rd edn. (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, 2001), pp. 15.49–15.53

    Google Scholar 

  22. F.W. Studier, A.H. Rosenberg, J.J. Dunn, Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol. 185, 60–89 (1990)

    Article  CAS  PubMed  Google Scholar 

  23. F.W. Studier, Use of bacteriophage T7 lysozyme to improve an inducible T7 expression system. J. Mol. Biol. 219, 37–44 (1991)

    Article  CAS  PubMed  Google Scholar 

  24. A.R. Ciccaglione, A. Costantino, C. Marcantonio, M. Equestre, A. Geraci, M. Rapicetta, Mutagenesis of hepatitis C virus E1 protein affects its membrane-permeabilizing activity. J. Gen. Virol. 82, 2243–2250 (2001)

    CAS  PubMed  Google Scholar 

  25. S.M. Stocks, Mechanism and use of the commercially available viability stain. BacLight. Cytom. A 61, 189–195 (2004)

    Article  CAS  Google Scholar 

  26. L.J. Holsinger, D. Nichani, L.H. Pinto, R.A. Lamb, Influenza A virus M2 ion channel protein: a structure-function analysis. J. Virol. 68, 1551–1563 (1994)

    CAS  PubMed Central  PubMed  Google Scholar 

  27. R. Zhang, K. Wang, W. Lv, W. Yu, S. Xie, K. Xu, W. Schwarz, S. Xiong, B. Sun, The ORF4a protein of human coronavirus 229E functions as a viroporin that regulates viral production. Biochim. Biophys. Acta 1838, 1088–1095 (2014)

    Article  CAS  PubMed  Google Scholar 

  28. L.J. Holsinger, R. Alams, Influenza virus M2 integral membrane protein is a homotetramer stabilized by formation of disulfide bonds. Virology 183, 32–43 (1991)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Natural Science Foundation of Zhejiang Province of China (Grant No. LY13C190003), the National Natural Science Foundation of China (Grant No. 30800856), the Zhejiang Key Laboratory of Aquatic Germplasm Resources (KL2013-2), the Ningbo Municipal Natural Science Foundation (Grant No. 2012A610141), and the National Ocean Public Welfare Scientific Research Project (Grant No. 201305027-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jigang Chen.

Additional information

Edited by Paul Schnitzler.

Zhao Zhang and Yangyang Yuan have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Yuan, Y., Fan, D. et al. Scylla serrata reovirus p35 protein expressed in Escherichia coli cells alters membrane permeability. Virus Genes 51, 69–76 (2015). https://doi.org/10.1007/s11262-015-1218-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11262-015-1218-5

Keywords

Navigation