Skip to main content
Log in

Osteoinductivity of gelatin/β-tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein-2 in an equine bone defect model

  • Original Article
  • Published:
Veterinary Research Communications Aims and scope Submit manuscript

Abstract

Fracture is one of the most life-threatening injuries in horses. Fracture repair is often associated with unsatisfactory outcomes and is associated with a high incidence of complications. This study aimed to evaluate the osteogenic effects of gelatin/β-tricalcium phosphate (GT) sponges loaded with different concentrations/ratios of mesenchymal stem cells (MSCs) and bone morphogenetic protein-2 (BMP-2) in an equine bone defect model. Seven thoroughbred horses were used in this study. Eight bone defects were created in the third metatarsal bones of each horse. Then, eight treatments, namely control, GT, GT/M-5, GT/M-6, GT/M-5/B-1, GT/M-5/B-3, GT/M-6/B-1, and GT/M-6/B-3 were applied to the eight different sites in a randomized manner (M-5: 2 × 105 MSCs; M-6: 2 × 106 MSCs; B-1: 1 μg of BMP-2; B-3: 3 μg of BMP-2). Repair of bone defects was assessed by radiography, quantitative computed tomography (QCT), and histopathological evaluation. Radiographic scores and CT values were significantly lower in the control group than in the other groups, while they were significantly higher in the GT/M-5/B-3 and GT/M-6/B-3 groups than in the other groups. The amount of mature compact bone filling the defects was greater in the GT/M-5/B-3 and GT/M-6/B-3 groups than in the other groups. The present study demonstrated that the GT sponge loaded with MSCs and BMP-2 promoted bone regeneration in an equine bone defect model. The GT/MSC/BMP-2 described here may be useful for treating horses with bone injuries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bose S, Roy M, Bandyopadhyay A (2012) Recent advances in bone tissue engineering scaffolds. Trends Biotechnol 30:546–554

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cao H, Kuboyama N (2010) A biodegradable porous composite scaffold of PGA/beta-TCP for bone tissue engineering. Bone 46:386–395

    Article  CAS  PubMed  Google Scholar 

  • Dégano IR, Vilalta M, Bagó JR, Matthies AM, Hubbell JA, Dimitriou H, Bianco P, Rubio N, Blanco J (2008) Bioluminescence imaging of calvarial bone repair using bone marrow and adipose tissue-derived mesenchymal stem cells. Biomaterials 29:427–437

    Article  PubMed  Google Scholar 

  • Devescovi V, Leonardi E, Ciapetti G, Cenni E (2008) Growth factors in bone repair. Chir Organi Mov 92:161–168

    Article  PubMed  Google Scholar 

  • Groeneveld EH, Burger EH (2000) Bone morphogenetic proteins in human bone regeneration. Eur J Endocrinol 142:9–21

    Article  CAS  PubMed  Google Scholar 

  • Jang BJ, Byeon YE, Lim JH, Ryu HH, Kim WH, Koyama Y, Kikuchi M, Kang KS, Kweon OK (2008) Implantation of canine umbilical cord blood-derived mesenchymal stem cells mixed with beta-tricalcium phosphate enhances osteogenesis in bone defect model dogs. J Vet Sci 9:387–393

    Article  PubMed Central  PubMed  Google Scholar 

  • Johnson BJ, Stover SM, Daft BM, Kinde H, Read DH, Barr BC, Anderson M, Moore J, Woods L, Stoltz J (1994) Causes of death in racehorses over a 2 year period. Equine Vet J 26:327–330

    Article  CAS  PubMed  Google Scholar 

  • Jones E, Yang X (2011) Mesenchymal stem cells and bone regeneration: current status. Injury 42:562–568

    Article  PubMed  Google Scholar 

  • Khojasteh A, Behnia H, Hosseini FS, Dehghan MM, Abbasnia P, Abbas FM (2013) The effect of PCL-TCP scaffold loaded with mesenchymal stem cells on vertical bone augmentation in dog mandible: a preliminary report. J Biomed Mater Res B Appl Biomater 101:848–854

    Article  PubMed  Google Scholar 

  • Kim J, Kim IS, Cho TH, Kim HC, Yoon SJ, Choi J, Park Y, Sun K, Hwang SJ (2010) In vivo evaluation of MMP sensitive high-molecular weight HA-based hydrogels for bone tissue engineering. J Biomed Mater Res A 95:673–681

    Article  PubMed  Google Scholar 

  • Kim J, Kim IS, Cho TH, Lee KB, Hwang SJ, Tae G, Noh I, Lee SH, Park Y, Sun K (2007) Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28:1830–1837

    Article  CAS  PubMed  Google Scholar 

  • Koch TG, Berg LC, Betts DH (2009) Current and future regenerative medicine - principles, concepts, and therapeutic use of stem cell therapy and tissue engineering in equine medicine. Can Vet J 50:155–165

    PubMed Central  PubMed  Google Scholar 

  • Kon E, Muraglia A, Corsi A, Bianco P, Marcacci M, Martin I, Boyde A, Ruspantini I, Chistolini P, Rocca M, Giardino R, Cancedda R, Quarto R (2000) Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337

    Article  CAS  PubMed  Google Scholar 

  • Linde A, Hedner E (1995) Recombinant bone morphogenetic protein-2 enhances bone healing, guided by osteopromotive e-PTFE membranes: an experimental study in rats. Calcif Tissue Int 56:549–553

    Article  CAS  PubMed  Google Scholar 

  • Lopez MJ, Markel MD (2012) Bone biology and fracture healing. In: Auer JA, Stick JA (eds) Equine surgery, 4th edn. Saunders, Philadelphia, pp 1025–1040

    Chapter  Google Scholar 

  • McDuffee LA, Pack L, Lores M, Wright GM, Esparza-Gonzalez B, Masaoud E (2012) Osteoprogenitor cell therapy in an equine fracture model. Vet Surg 41:773–783

    Article  PubMed  Google Scholar 

  • Nöth U, Rackwitz L, Steinert AF, Tuan RS (2010) Cell delivery therapeutics for musculoskeletal regeneration. Adv Drug Deliv Rev 62:765–783

    Article  PubMed  Google Scholar 

  • Perrier M, Lu Y, Nemke B, Kobayashi H, Peterson A, Markel M (2008) Acceleration of second and fourth metatarsal fracture healing with recombinant human bone morphogenetic protein-2/calcium phosphate cement in horses. Vet Surg 37:648–655

    Article  PubMed  Google Scholar 

  • Schmökel HG, Weber FE, Seiler G, von Rechenberg B, Schense JC, Schawalder P, Hubbell J (2004) Treatment of nonunions with nonglycosylated recombinant human bone morphogenetic protein-2 delivered from a fibrin matrix. Vet Surg 33:112–118

    Article  PubMed  Google Scholar 

  • Seo JP, Tsuzuki N, Haneda S, Yamada K, Furuoka H, Tabata Y, Sasaki N (2012) Proliferation of equine bone marrow-derived mesenchymal stem cells in gelatin/β-tricalcium phosphate sponges. Res Vet Sci 93:1481–1486

    Article  CAS  PubMed  Google Scholar 

  • Tadokoro M, Matsushima A, Kotobuki N, Hirose M, Kimura Y, Tabata Y, Hattori K, Ohgushi H (2011) Bone morphogenetic protein-2 in biodegradable gelatin and β-tricalcium phosphate sponges enhances the in vivo bone-forming capability of bone marrow mesenchymal stem cells. J Tissue Eng Regen Med 6:253–260

    Article  PubMed  Google Scholar 

  • Takahashi Y, Yamamoto M, Tabata Y (2005a) Enhanced osteoinduction by controlled release of bone morphogenetic protein-2 from biodegradable sponge composed of gelatin and beta-tricalcium phosphate. Biomaterials 26:4856–4865

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Yamamoto M, Tabata Y (2005b) Osteogenic differentiation of mesenchymal stem cells in biodegradable sponges composed of gelatin and beta-tricalcium phosphate. Biomaterials 26:3587–3596

    Article  CAS  PubMed  Google Scholar 

  • Terella A, Mariner P, Brown N, Anseth K, Streubel SO (2010) Repair of a calvarial defect with biofactor and stem cell-embedded polyethylene glycol scaffold. Arch Facial Plast Surg 12:166–171

    Article  PubMed Central  PubMed  Google Scholar 

  • Tsuzuki N, Otsuka K, Seo J, Yamada K, Haneda S, Furuoka H, Tabata Y, Sasaki N (2011) In vivo osteoinductivity of gelatin β-tri-calcium phosphate sponge and bone morphogenetic protein-2 on an equine third metacarpal bone defect. Res Vet Sci 93:1021–1025

    Article  Google Scholar 

  • Vo TN, Kasper FK, Mikos AG (2012) Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev 64:1292–1309

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Huang Y, Pan K, Jiang X, Liu C (2010) Osteogenic responses to different concentrations/ratios of BMP-2 and bFGF in bone formation. Ann Biomed Eng 38:77–87

    Article  PubMed  Google Scholar 

  • Yamaji K, Kawanami M, Matsumoto A, Odajima T, Nishitani Y, Iwasaka K, Yoshimitsu K, Yoshiyama M (2007) Effects of dose of recombinant human BMP-2 on bone formation at palatal sites in young and old rats. Dent Mater J 26:481–486

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M, Ikada Y, Tabata Y (2001) Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed 12:77–88

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann CE, Gierloff M, Hedderich J, Açil Y, Wiltfang J, Terheyden H (2011) Survival of transplanted rat bone marrow-derived osteogenic stem cells in vivo. Tissue Eng A 17:1147–1156

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Takashi Yamaga, Takafumi Tanabe, Hiroki Uchiyama, and Yoshinori Kambayashi for their assistance in bone marrow aspiration and postoperative care.

Conflict of interest

The authors declare no financial or personal conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Sasaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seo, Jp., Tsuzuki, N., Haneda, S. et al. Osteoinductivity of gelatin/β-tricalcium phosphate sponges loaded with different concentrations of mesenchymal stem cells and bone morphogenetic protein-2 in an equine bone defect model. Vet Res Commun 38, 73–80 (2014). https://doi.org/10.1007/s11259-013-9587-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11259-013-9587-5

Keywords

Navigation