Skip to main content

Advertisement

Log in

Growth factors in bone repair

  • Original Article
  • Published:
La Chirurgia degli Organi di Movimento Aims and scope Submit manuscript

Abstract

The role of growth factors (GF) in bone repair is widely recognised, particularly for bone morphogenetic proteins (BMPs), fibroblast growth factor (FGF), insulin-like growth factors (IGFs), platelet-derived growth factor (PDGF), transforming growth factor-β (TGF-β) and vascular endothelial growth factor (VEGF). GF are usually stored in the extracellular matrix (ECM), but after injury are actively released by ECM, cells and platelets. In this paper, the use of different recombinant GF for bone repair stimulation is summarised in experimental research and clinical applications. Drug delivery systems, including carriers, cell or gene therapy, are needed to ensure a sustained local release of the factors, but efficacy and potential side effects of such systems require additional research prior to clinical applications. Current sources for delivery of a GF mixture into the site of bone repair are platelet gel and demineralised bone matrix. Nevertheless, the levels of GF in such preparations are affected by variability among donors and differences in preparation. Autogenous GF, produced by the patient himself during the bone repair process, potentially interfere with prosthetic devices or even have a role in implant loosening due to the periprosthetic tissue reaction. In conclusion, GF are key components of functional bone regeneration: screening of basic research results and controlled clinical trials are accelerating the development of GF in orthopaedic surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. AM Phillips (2005) Overview of the fracture healing cascade. Injury 365:S5–S7

    Article  Google Scholar 

  2. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop Relat Res Suppl 355S:S7–S21

    Article  Google Scholar 

  3. Malizos KM, Papatheodorou LK (2005) The healing potential of the periosteum. Molecular aspects. Injury 36S:S13–S19

    Article  Google Scholar 

  4. Huang Z, Nelson ER, Smith RL, Goodman SB (2007) The sequential expression profiles of growth factors from osteoprogenitors to osteoblasts in vitro. Tissue Eng 13:2311–2320

    Article  PubMed  CAS  Google Scholar 

  5. Jones AL, Bucholz RW, Bosse MJ et al (2006) BMP-2 Evaluation in Surgery for Tibial Trauma-Allgraft (BESTT-ALL) Study Group. Recombinant human BMP-2 and allograft compared with autogenous bone graft for reconstruction of diaphyseal tibial fractures with cortical defects. A randomized, controlled trial. J Bone Joint Surg Am 88:1431–1441

    Article  PubMed  Google Scholar 

  6. Westerhuis RJ, van Bezooijen RL, Kloen P (2005) Use of bone morphogenetic proteins in traumatology. Injury 36:1405–1412

    Article  PubMed  CAS  Google Scholar 

  7. Giannoudis PV, Einhorn TA, Schmidmaier G, Marsh D (2008) The diamond concept - open questions. Injury 39S2:S5–S8

    Article  Google Scholar 

  8. Tshamala M, van Bree H (2006) Osteoinductive properties of the bone marrow. Myth or reality. Vet Comp Orthop Traumatol 3:133–141

    Google Scholar 

  9. Einhorn TA, Majeska RJ, Mohaideen A et al (2003) A single percutaneous injection of recombinant human bone morphogenetic protein-2 accelerates fracture repair. J Bone Joint Surg Am 85-A:1425–1435

    PubMed  Google Scholar 

  10. Termaat MF, Den Boer FC, Bakker FC et al (2005) Bone morphogenetic proteins. Development and clinical efficacy in the treatment of fractures and bone defects. J Bone Joint Surg Am 87:1367–1378

    Article  PubMed  CAS  Google Scholar 

  11. Johnson EE, Urist MR, Finerman GAM (1992) Resistant nonunions and partial or complete segmental defects of long bones. Treatment with implants of a composite of human bone morphogenetic protein (BMP) and autolyzed, antigen-extracted, allogeneic (AAA) bone. Clin Orthop Relat Res 277:229–237

    PubMed  Google Scholar 

  12. Govender S, Csimma C, Genant HK et al; BMP-2 evaluation in surgery for tibial trauma (BESTT) study group (2002) Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am 84-A:2123–2134

    PubMed  Google Scholar 

  13. Nordsletten L (2006) Recent developments in the use of bone morphogenetic protein in orthopaedic trauma surgery. Curr Med Res Opin 22[Suppl 1]:S13–S17

    Article  PubMed  CAS  Google Scholar 

  14. Giannoudis PV, Tzioupis C (2005) Clinical applications of BMP-7. The UK perspective. Injury 36S:S47–S50

    Article  Google Scholar 

  15. Geesink RG, Hoefnagels NH, Bulstra SK (1999) Osteogenic activity of OP-1 bone morphogenetic protein (BMP-7) in a human fibular defect. J Bone Joint Surg Br 81:710–718

    Article  PubMed  CAS  Google Scholar 

  16. Burkus JK, Dorchak JD, Sanders DL (2002) Radiographic assessment of interbody fusion using rhBMP-2 with tapered interbody cages. J Spinal Disord Tech 15:337–349

    PubMed  Google Scholar 

  17. Nordsletten L, Madsen JE (2006) The effect of bone morphogenetic proteins in fracture healing. Scand J Surg 95:91–94

    PubMed  CAS  Google Scholar 

  18. Gautschi OP, Frey SP, Zellweger R (2007) Bone morphogenetic proteins in clinical applications. ANZ J Surg 77:626–631

    Article  PubMed  Google Scholar 

  19. Chen WJ, Jingushi S, Aoyama I et al (2004) Effects of FGF-2 on metaphyseal fracture repair in rabbit tibiae. J Bone Miner Metab 22:303–309

    Article  PubMed  CAS  Google Scholar 

  20. Radomsky ML, Aufdemorte TB, Swain LD et al (1999) A novel formulation of FGF-2 in a hyaluronan gel accelerates fracture healing in non-human primates. J Orthop Res 17:607–614

    Article  PubMed  CAS  Google Scholar 

  21. Spencer EM, Liu CC, Si EC, Howard GA (1991) In vivo actions of insulin-like growth factor-I (IGF-I) on bone formation and resorption in rats. Bone 12:21–26

    Article  PubMed  CAS  Google Scholar 

  22. Schmidmaier G, Wildemann B, Gabelein T et al (2003) Synergistic effect of IGF-I and TGF-beta1 on fracture healing in rats: single versus combined application of IGF-I and TGF-beta1. Acta Orthop Scand 74:604–610

    Article  PubMed  Google Scholar 

  23. Schmidmaier G, Lucke M, Schwabe P et al (2006) Collective review: bioactive implants coated with poly(D,L-lactide) and growth factors IGF-I, TGF-beta1, or BMP-2 for stimulation of fracture healing. J Long Term Eff Med Implants 16:61–69

    PubMed  CAS  Google Scholar 

  24. Nash TJ, Howlett CR, Martin C et al (1994) Effect of platelet-derived growth factor on tibia osteotomies in rabbits. Bone 15:203–208

    Article  PubMed  CAS  Google Scholar 

  25. Dimitriou R, Tsiridis E, Giannoudis PV (2005) Current concepts of molecular aspects of bone healing. Injury 36:1392–1404

    Article  PubMed  Google Scholar 

  26. Lind M, Overgaard S, Ongpipattanakul B et al (1996) Transforming growth factor-b1 stimulates bone ongrowth to weight-loaded tricalcium phosphate coated implants: an experimental study in dogs. J Bone Joint Surg Br 78:377–382

    PubMed  CAS  Google Scholar 

  27. Street J, Bao M, deGuzman L et al (2002) Vascular endothelial growth factor stimulates bone repair by promoting angio-genesis and bone turnover. Proc Natl Acad Sci USA 99:9656–9661

    Article  PubMed  CAS  Google Scholar 

  28. Hollinger JO, Hart CE, Hirsch SN et al (2008) Recombinant human platelet-derived growth factors: biology and clinical applications. J Bone Joint Surg Am 90[Suppl 1]:48–54

    Article  PubMed  Google Scholar 

  29. Ten Dijke P (2006) Bone morphogenetic protein signal transduction in bone. Curr Med Res Opin 22:S7–S11

    Article  PubMed  CAS  Google Scholar 

  30. Musgrave DS, Pruchnic R, Bosch P et al (2002) Human skeletal muscle cells in ex vivo gene therapy to deliver bone morphogenetic protein-2. J Bone Joint Surg (Br) 84:120–127

    Article  CAS  Google Scholar 

  31. Marx RE, Carlson ER, Eichstaedt RM et al (1998) Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85:638–646

    Article  PubMed  CAS  Google Scholar 

  32. Camargo PM, Lekovic V, Weinlaender M et al (2002) Plateletrich plasma and bovine porous bone mineral combined with guided tissue regeneration in the treatment of intrabony defects in humans. J Periodontal Res 37:300–306

    Article  PubMed  Google Scholar 

  33. Fennis JP, Stoelinga PJ, Jansen JA (2004) Mandibular reconstruction: a histological and histomorphometric study on the use of autogenous scaffolds, particulate cortico-cancellous bone grafts and platelet rich plasma in goats. Int J Oral Maxillofac Surg 33:48–55

    Article  PubMed  CAS  Google Scholar 

  34. Kitoh H, Kitakoji T, Tsuchiya H et al (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis: a preliminary result of three cases. Bone 35:892–898

    Article  PubMed  Google Scholar 

  35. Anitua E, Sànchez M, Nurden AT et al (2006) New insights into and novel applications for platelet-rich fibrin therapies. Trends Biotechnol 24:227–234

    Article  PubMed  CAS  Google Scholar 

  36. Mehta S, Watson JT (2008) Platelet rich concentrate: basic science and current clinical applications. J Orthop Trauma 22:433–438

    Article  Google Scholar 

  37. Marx RE (2004) Platelet-rich plasma: evidence to support its use. J Oral Maxillofac Surg 62:489–496

    Article  PubMed  Google Scholar 

  38. Trindade-Suedam IK, Leite FR, de Morais JA et al (2007) Avoiding leukocyte contamination and early platelet activation in platelet-rich plasma. J Oral Implantol 33:334–339

    Article  PubMed  Google Scholar 

  39. Moojen DJ, Everts PA, Schure RM et al (2008) Antimicrobial activity of platelet-leukocyte gel against Staphylococcus aureus. J Orthop Res 26:404–410

    Article  PubMed  Google Scholar 

  40. Weiner BK, Walker M (2003) Efficacy of autologous growth factors in lumbar intertransverse fusions. Spine 28:1968–1970

    Article  PubMed  Google Scholar 

  41. Plachokova AS, van den Dolder J, Stoelinga JP, Jansen JA (2007) Early effect of platelet-rich plasma on bone healing in combination with an osteoconductive material in rat cranial defects. Clin Oral Impl Res 18:244–251

    Article  Google Scholar 

  42. Sammartino G, Tia M, Marenzi G et al (2005) Use of autologous platelet-rich plasma (PRP) in periodontal defect treatment after extraction of impacted mandibular third molars. J Oral Maxillofac Surg 63:766–770

    Article  PubMed  Google Scholar 

  43. Ilgenli T, Dundar N, Kal BI (2007) Demineralized freeze-dried bone allograft and platelet-rich plasma vs. platelet-rich plasma alone in infrabony defects: a clinical and radiographic evaluation. Clin Oral Investig 11:51–59

    Article  PubMed  Google Scholar 

  44. Dallari D, Fini M, Stagni C et al (2006) In vivo study on the healing of bone defects treated with bone marrow stromal cells, platelet-rich plasma, and freeze-dried bone allografts, alone and in combination. J Orthop Res 24:877–888

    Article  PubMed  CAS  Google Scholar 

  45. Dallari D, Savarino L, Stagni C et al (2007) Enhanced tibial osteotomy healing with use of bone grafts supplemented with platelet gel or platelet gel and bone marrow stromal cells. J Bone Joint Surg Am 89:2413–2420

    Article  PubMed  CAS  Google Scholar 

  46. Ranly DM, Lohmann CH, Andreacchio D et al (2007) Plateletrich plasma inhibits demineralized bone matrix-induced bone formation in nude mice. J Bone Joint Surg Am 89:139–147

    Article  PubMed  Google Scholar 

  47. Bae HW, Zhao L, Kanim LE et al (2006) Intervariability and intravariability of bone morphogenetic proteins in commercially available demineralised bone matrix products. Spine 31:1299–1308

    Article  PubMed  Google Scholar 

  48. Morgan EF, Mason ZD, Bishop G et al (2008) Combined effects of recombinant human BMP-7 (rhBMP-7) and parathyroid hormone (1-34) in metaphyseal bone healing. Bone [Epub ahead of print] doi: 10.1016/j.bone.2008.07.251

  49. Gurevitch O, Kurkalli BG, Progozhina T et al (2003) Reconstruction of cartilage, bone, and hematopoietic microenvironment with demineralized bone matrix and bone marrow cells. Stem Cells 21:588–597

    Article  PubMed  Google Scholar 

  50. Luginbuhel V, Meinel L, Merkle HP, Gander B (2004) Localized delivery factors in bone repair. Eur J Pharm Biopharm 58:197–208

    Article  CAS  Google Scholar 

  51. Raida M, Heymann AC, Gunther C, Niederwieser D (2006) Role of bone morphogenetic protein 2 in the crosstalk between endothelial progenitor and mesenchymal stem cells. Int J Mol Med 18:735–739

    PubMed  CAS  Google Scholar 

  52. Veillette CJH, McKee MD (2007) Growth factors - BMPs, DBMs, and buffy coat products: are there any proven differences among them? Injury 38[Suppl 1]:S38–S48

    Article  PubMed  Google Scholar 

  53. Schmidmaier G, Herrmann S, Green J et al (2006) Quantitative assessment of growth factors in reaming aspirate, iliac crest, and platelet preparation. Bone 39:1156–1163

    Article  PubMed  CAS  Google Scholar 

  54. Giannoudis PV, Pountos I, Morley J et al (2008) Growth factor release following femoral nailing. Bone 42:751–757

    Article  PubMed  CAS  Google Scholar 

  55. Hong J, Andersson J, Ekdahl KN et al (1999) Titanium is a highly thrombogenic biomaterial: possible implications for osteogenesis. Thromb Haemost 82:58–64

    PubMed  CAS  Google Scholar 

  56. Hee Soon Cho, Park SY, Kim S et al (2008) Effect of different bone substitutes on the concentration of growth factors in platelet-rich plasma. J Biomater Appl 22:545–557

    Article  CAS  Google Scholar 

  57. Cenni E, Granchi D, Ciapetti G et al (2002) Effect of four acrylic bone cements on transforming growth factor-beta1 expression by osteoblast-like cells MG63. Biomaterials 23:305–311

    Article  PubMed  CAS  Google Scholar 

  58. Prabhu A, Shelburne CE, Gibbons DF (1998) Cellular proliferation and cytokine responses of murine macrophage cell line J774A.1 to polymethylmethacrylate and cobalt-chrome alloy particles. J Biomed Mater Res 42:655–663

    Article  PubMed  CAS  Google Scholar 

  59. Dean DD, Schwartz Z, Blanchard CR et al (1999) Ultrahigh molecular weight polyethylene particles have direct effects on proliferation, differentiation, and local factor production of MG63 osteoblast-like cells. J Orthop Res 17:9–17

    Article  PubMed  CAS  Google Scholar 

  60. Wang JY, Wicklund BH, Gustilo RB, Tsukayama DT (1996) Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro. Biomaterials 17:2233–2240

    Article  PubMed  CAS  Google Scholar 

  61. Konttinen YT, Waris V, Xu JW et al (1997) Transforming growth factor-b1 and 2 in the synovial-like interface membrane between implant and bone in loosening of total hip arthroplasty. J Rheumatol 24:694–701

    PubMed  CAS  Google Scholar 

  62. Perry MJ, Mortuza FY, Ponsford FM et al (1997) Properties of tissue from around cemented joint implants with erosive and/or linear osteolysis. J Arthroplasty 12:670–676

    Article  PubMed  CAS  Google Scholar 

  63. Nabae M, Inoue K, Ushiyama T, Hukuda S (1999) Gene expression of antiinflammatory mediators in THR retrieved interfacial membranes. Acta Orthop Scand 70:149–154

    Article  PubMed  CAS  Google Scholar 

  64. Shanbhag AS, Kaufman AM, Hayata K, Rubash HE (2007) Assessing osteolysis with use of high-throughput protein chips. J Bone Joint Surg Am 89:1081–1089

    Article  PubMed  Google Scholar 

  65. Campbell PA, Wang M, Amstutz HC, Goodman SB (2002) Positive cytokine production in failed metal-on-metal total hip replacements. Acta Orthop Scand 73:506–512

    Article  PubMed  Google Scholar 

  66. Jiranek WA, Machado M, Jasty M et al (1993) Production of cytokines around loosened cemented acetabular components. Analysis with immunohistochemical techniques and in situ hybridization. J Bone Joint Surg Am 75:863–879

    PubMed  CAS  Google Scholar 

  67. Goodman SB, Knoblich G, O’Connor M et al (1996) Heterogeneity in cellular and cytokine profiles from multiple samples of tissue surrounding revised hip prostheses. J Biomed Mater Res 31:421–428

    Article  PubMed  CAS  Google Scholar 

  68. Xu JW, Konttinen YT, Li TF et al (1998) Production of plateletderived growth factor in aseptic loosening of total hip replacement. Rheumatol Int 17:215–221

    Article  PubMed  CAS  Google Scholar 

  69. Niissalo S, Li TF, Santavirta S et al (2002) Dense innervation in pseudocapsular tissue compared to aneural interface tissue in loose totally replaced hips. J Rheumatol 29:796–803

    PubMed  Google Scholar 

  70. Andersson MK, Stark A, Anissian L et al (2005) Low IGF-I in synovial fluid and serum in patients with aseptic prosthesis loosening. Acta Orthop 76:320–325

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Devescovi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Devescovi, V., Leonardi, E., Ciapetti, G. et al. Growth factors in bone repair. Chir Organi Mov 92, 161–168 (2008). https://doi.org/10.1007/s12306-008-0064-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12306-008-0064-1

Keywords

Navigation