Skip to main content
Log in

Effects of different fire intensities on chemical and biological soil components and related feedbacks on a Mediterranean shrub (Phillyrea angustifolia L.)

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In July 2000, six plots of Mediterranean maquis in the Castel Volturno Nature Reserve were burnt at two intensity levels to examine the effects of fire intensities on chemical and biological soil components and their relationships with ecophysiological processes of Phillyrea angustifolia L. Net photosynthesis and stomatal conductance, as well as P availability, were higher in burnt plots than in control plots, even 2 years after fire; the TM density of total soil microfungi was significantly lower in the first 8 months after fire, while xerotolerant and heat-stimulated soil microfungi were still higher 2 years after fire. Significant correlations between photosynthesis and stomatal conductance in resprouts and mycorrhizal status, as well as changes in the soil fungal components of the communities, suggest that both soil and mycorrhizal fungi play a role in immobilizing and translocating nutrients temporarily released in the below-ground system by fire. Nutrient balance interacts with physiological processes, and a feedback mechanism is well represented by stomatal conductance, which allows both the influx of water and mineral nutrients from the soil; moreover, the post-fire increase in photosynthetic activity promotes vigorous resprouting and may lead to increased availability of carbohydrates for soil biota and, consequently, to enhanced vegetation resilience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera-Gomez L, Davies FT Jr, Olalde-Portugal V, Duray SA, Phavaphutanon L (1999) Influence of phosphorus and endomycorrhiza (Glomus intraradices) on gas exchange and plant growth of Chile Ancho Pepper (Capsicum Annuum L. cv. San Luis). Photosynthetica 36:441–449. doi:10.1023/A:1007032320951

    Article  Google Scholar 

  • Ahlgren IF (1974) The effect of fire on soil organisms. In: Kozlowski TT, Ahlgren CE (eds) Fire and ecosystems. Academic Press, New York pp 47–72

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42. doi:10.1007/s005720100097

    Article  Google Scholar 

  • Augé RM, Duan XD, Ebel RC, Stodola AJW (1994) Nonhydraulic signalling of soil drying in mycorrhizal maize. Planta 193:74–82. doi:10.1007/BF00191609

    Article  Google Scholar 

  • Bartoli A, Gerdol R, Massari G (1991) Soil fungi succession in a Mediterranean “macchia” after fire. Rev Ecol Biol Sol 28(4):387–402

    Google Scholar 

  • Bednarz CW, Oosterhuis DM, Evans RD (1998) Leaf photosynthesis and carbon isotope discrimination of cotton in response to potassium deficiency. Environ Exp Bot 39:31–139. doi:10.1016/S0098-8472(97)00039-7

    Article  Google Scholar 

  • Bentivenga SP, Hetrick BAD (1991) Relationship between mycorrhizal activity, burning and plant productivity in tallgrass prairie. Can J Bot 69:2597–2602. doi:10.1139/b91-323

    Article  Google Scholar 

  • Bethlenfalvay GJ, Linderman RG (1992) Mycorrhizae in sustainable agriculture. American Society of Agronomy Special Publication no. 54, Madison

    Google Scholar 

  • Bolger T (2001) The functional value of species biodiversity—A review. Biol Environ: Proc Royal Irish Acad 101B(3):199–224

    Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman and Hall, London

    Google Scholar 

  • Brant JB, Myrold DD, Sulzman EW (2006) Root controls on soil microbial community structure in forest soils. Oecologia 148:650–659. doi:10.1007/s00442-006-0402-7

    Article  PubMed  Google Scholar 

  • Brundrett M, Melville L, Peterson L (1994) Practical methods in mycorrhizal research. Mycologue Publications Ltd, Waterloo

    Google Scholar 

  • Canadell J, Lloret F, Lòpez-Soria L (1991) Resprouting vigour of two Mediterranean shrub species after experimental fire treatments. Vegetatio 95:119–126

    Google Scholar 

  • Caravaca F, Figueroa D, Azcón-Aguilar C, Barea JM, Roldán A (2003) Medium-term effects of mycorrhizal inoculation and composted municipal waste addition on the establishment of two Mediterranean shrub species under semiarid field conditions. Agric Ecosyst Environ 97:95–105. doi:10.1016/S0167-8809(03)00126-9

    Article  Google Scholar 

  • Chandler C, Cheney P, Thomas P, Trabaud L, Williams D (1983) Fire in forestry. Forest fire behaviour and effects. Wiley, New York

    Google Scholar 

  • Cooper RB, Blaser RE, Brown RH (1967) Potassium nutrition effects on net photosynthesis and morphology of alfalfa. Soil Sci Soc Am J 31:231–235

    Article  CAS  Google Scholar 

  • Copley J (2000) Ecology goes underground. Nature 406:452–454. doi:10.1038/35020131

    Article  PubMed  CAS  Google Scholar 

  • D’Ascoli R, Rutigliano FA, De Pascale RA, Gentile A, Virzo De Santo A (2005) Functional diversity of the microbial community in Mediterranean maquis soils as affected by fires. Int J Wildland Fire 14(4):355–363. doi:10.1071/WF05032

    Article  Google Scholar 

  • De Marco A, Forte A, Gentile AE, Virzo De Santo A (2004) Elemental composition and litter decomposition of Phillyrea angustifolia L. at burned and unburned sites. In: Arianoutsou and Papanastasis (eds) Ecology, conservation and management of mediterranean climate ecosystems, Proceedings 10th MEDECOS conference, Millpress, Rotterdam, p 49

  • De Marco A, Gentile AE, Arena A, Virzo De Santo A (2005) Organic matter, nutrient content and biological activity in burned and unburned soils of a Mediterranean maquis area of southern Italy. Int J Wildland Fire 14(4):365–377. doi:10.1071/WF05030

    Article  Google Scholar 

  • DeBano LF, Conrad CE (1978) The effect of fire on nutrients in a chaparral ecosystem. Ecology 59(3):489–497. doi:10.2307/1936579

    Article  CAS  Google Scholar 

  • DeBano LF, Klopatek JM (1987) Effect of management on nutrient dynamics in southwestern pinyon-juniper woodlands. In: Troendle CA, Kaufmann MR, Hamre RH, Winokur RP (eds) Management of subalpine forests: building on 50 years of research. Proceeding of a technical conference, Silver Creek, CO, July 6–9, USDA For Serv Gen Tech Rep RM-149, pp 157–160

  • DiCastri F, Younes T (1990) Ecosystem function of biological diversity. Biol Int 22:1–20. doi: 10.1007/BF00391342

    Google Scholar 

  • Dietz KJ, Foyer C (1986) The relationship between phosphate status and photosynthesis in leaves—Reversibility of the effects of phosphate deficiency on photosynthesis. Planta 167:376–381. doi:10.1007/BF00391342

    Article  Google Scholar 

  • Dix NJ, Webster J (1995) Fungal ecology. Chapman and Hall, London

    Google Scholar 

  • Duan X, Neuman DS, Reiber JM, Green GD, Saxton AM, Augé RM (1996) Mycorrhizal influence on hydraulic and hormonal factors implicated in the control of stomatal conductance during drought. J Exp Bot 47(10):1541–1550. doi:10.1093/jxb/47.10.1541

    Article  CAS  Google Scholar 

  • El Omari B, Fleck I, Aranda X, Abadia A, Cano A, Arnao MB (2003) Total antioxidant activity in Quercus ilex resprouts after fire. Plant Physiol Biochem 41:41–47. doi:10.1016/S0981-9428(02)00007-4

    Article  CAS  Google Scholar 

  • Esposito A, Mazzoleni S, Strumia S (1999) Post-fire bryophyte dynamics in Mediterranean vegetation. J Veg Sci 10:261–268. doi:10.2307/3237147

    Article  Google Scholar 

  • Estaún V, Savé R, Biel C (1997) AM inoculation as a biological tool to improve plant revegetation of a disturbed soil with Rosmarinus officinalis under semi-arid conditions. Appl Soil Ecol 6:223–229. doi:10.1016/S0929-1393(97)00014-0

    Article  Google Scholar 

  • FAO (1998) World reference base for soil resources. (World Soil Resources Report no. 84: Rome)

  • Fitter AH (1988) Water relations of red clover Trifolium pratense L. as affect by VA mycorrhizal infection and phosphorus supply before and during drought. J Exp Bot 39:595–603. doi:10.1093/jxb/39.5.595

    Article  Google Scholar 

  • Fleck I, Grau D, Sanjosé M, Vidal D (1996a) Carbon isotope discrimination in Quercus ilex resprouts after fire and tree-fell. Oecologia 105:286–292. doi:10.1007/BF00328730

    Article  Google Scholar 

  • Fleck I, Grau D, Sanjosé M, Vidal D (1996b) Influence of fire and tree-fell on physiological parameters in Quercus ilex resprouts. Ann Sci 53:337–346. doi:10.1051/forest:19960216

    Article  Google Scholar 

  • Fleck I, Hogan KP, Llorens L, Abadia A, Aranda X (1998) Photosynthesis and photoprotection in Quercus ilex resprouts after fire. Tree Physiol 18:607–614

    PubMed  CAS  Google Scholar 

  • Fleck I, Aranda X, El Omari B, Permanyer J, Abadia A, Hogan KP (2000) Light energy dissipation in Quercus ilex resprouts after fire. Aust J Plant Physiol Funct Plant Biol 27:129–137. doi:10.1071/PP99073

    Article  Google Scholar 

  • Gibson D, Hetrick BAD (1988) Topographic and fire effects on the composition and abundance of VA-mycorrhizal fungi in a tallgrass prairie. Mycologia 80:433–441. doi:10.2307/3807844

    Article  Google Scholar 

  • Gimeno-Garcìa E, Andreu V, Rubio JL (2000) Changes in organic matter, nitrogen, phosphorous and cations in soil as a result of fire and water erosion in a Mediterranean landscape. Eur J Soil Sci 51:201–210. doi:10.1046/j.1365-2389.2000.00310.x

    Article  Google Scholar 

  • Giovannini G, Lucchesi S (1997) Modifications induced in soil physico-chemical parameters by experimental fires at different intensities. Soil Sci 162(7):479–486. doi:10.1097/00010694-199707000-00003

    Article  CAS  Google Scholar 

  • Giovannini G, Lucchesi S, Giachetti M (1990) Effects of heating on some chemical parameters related to soil fertility and plant growth. Soil Sci 149(6):344–350. doi:10.1097/00010694-199006000-00005

    Article  CAS  Google Scholar 

  • Goicoechea N, Antolìn MC, Sànchez-Dìaz M (1997) Gas exchange is related to the hormone balance in mycorrhizal or nitrogen-fixing alfalfa subjected to drought. Physiol Plant 100:899–997. doi:10.1111/j.1399-3054.1997.tb00027.x

    Article  Google Scholar 

  • Grace C, Stribley DP (1991) A safer procedure for routine staining of vesicular-arbuscular mycorrhizal fungi. Mycol Res 95(1):1160–1162

    Article  Google Scholar 

  • Grassle JF, Lasarre P, McIntyre AD, Ray GC (1991) Marine biodiversity and ecosystem function. Biol Int 23

  • Hungerford RD, Harrington MG, Frandsen WH, Ryan KC, Niehoff GJ (1995) The influence of fire on factors that affect site productivity. In: Harvey AC, NuenschwandeLF (eds) Proceedings—management and productivity of Western-montane forest soils. USDA. For Serv Gen Tech Rep Int-280, pp 32–50

  • Jasper DA, Clarke KA, Davy JA, Mercer S, Abbott LK (1994) Managing or inoculating VA mycorrhizal fungi in mine soils to be revegetated. In: Pankhurst CE (ed) Soil biota in sustainable farming systems. CSIRO Publishing, Melbourne, pp 9–11

    Google Scholar 

  • Jeffries P, Barea JM (1994) Biogeochemical cycling and arbuscular mycorrhizas in the sustainability of plant–soil systems. In: Gianinazzi S, Schuepp H (eds) Impact of arbuscular mycorrhizae in sustainable agriculture. Birkhauser, Basel, pp 101–115

    Google Scholar 

  • Jeffries P, Barea JM (2001) Arbuscular mycorrhiza: a key component of sustainable plant–soil ecosystems. In: Hock B (ed) The mycota. vol IX: fungal associations. Springer, Berlin, pp 95–113

    Google Scholar 

  • Kennard DK, Gholz HL (2001) Effects of high- and low-intensity fires on soil properties and plant growth in a Bolivian dry forest. Plant Soil 234:119–129. doi:10.1023/A:1010507414994

    Article  CAS  Google Scholar 

  • Klopatek CC, Debano LF, Klopatek JM (1988) Effects of simulated fire on vesicular-arbuscular mycorrhizae in pinyon-juniper woodland soil. Plant Soil 109:245–249. doi:10.1007/BF02202090

    Article  Google Scholar 

  • Kruger EK, Reich PB (1997) Response of hardwood regeneration to fire in mesic forest openings. II Leaf gas exchange, nitrogen concentration and water status. Can J For Res 27:1832–1840. doi:10.1139/cjfr-27-11-1832

    Article  Google Scholar 

  • Kutiel P, Shaviv A (1992) Effects of soil type, plant composition and leaching on soil nutrients following a simulated forest fire. For Ecol Manag 53(1–4):329–343. doi:10.1016/0378-1127(92)90051-A

    Article  Google Scholar 

  • Lauer MJ, Pallardy SG, Blevins DG, Randall DD (1989) Whole leaf carbon exchange characteristics of phosphate deficient soybeans (Glycine max L.). Plant Physiol 91:848–854. doi:10.1104/pp.91.3.848

    Article  PubMed  CAS  Google Scholar 

  • Lodge DJ, McDowell WH, McSwiney CP (1994) The importance of nutrient pulses in tropical forests. Trends Ecol Evol 9:384–387. doi:10.1016/0169-5347(94)90060-4

    Article  Google Scholar 

  • Lussenhop J, Wicklow DT (1984) Changes in spatial distribution of fungal propagules associated with invertebrate activity in soil. Soil Biol Biochem 16:601–604. doi:10.1016/0038-0717(84)90079-8

    Article  Google Scholar 

  • Manes F, Capogna F, Puppi G, Vitale M (2002) Ecophysiological characterisation of Phillyrea angustifolia L. and response of resprouts to different fire disturbance intensities. In: Trabaud L, Prodon R (eds) Fire and biological processes. Backhuys Publishers, Leiden, pp 115–130

    Google Scholar 

  • Miller SL (1995) Functional diversity in fungi. Can J Bot 73(Suppl 1):50–57. doi:10.1139/b95-224

    Article  Google Scholar 

  • Ministero delle Politiche Agricole e Forestali (2000) Osservatorio Nazionale Pedologico e per la Qualità del Suolo Metodi di analisi chimica del suolo. F Angeli, Milano

    Google Scholar 

  • Moreno JM, Oechel WC (1994) Fire intensity as a determinant factor of postfire plant recovery in southern California chaparral. In: Moreno JM, Oechel WC (eds) Fire in the environment: the ecological, atmospheric and climatic importance of vegetation fires. Wiley, New York, pp 26–45

    Google Scholar 

  • Naeem S, Li S (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509. doi:10.1038/37348

    Article  CAS  Google Scholar 

  • Naveh Z (1989) Fire in Mediterranean—a landscape ecological perspective. In: Goldammer JG, Jenkins J (eds) Fire in ecosystem dynamics. Proceeding of the third international symposium on fire ecology, Freiburg FRG May 1989 pp 1–20

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on below-ground sustainability: a review and synthesis. For Ecol Manag 122:51–71. doi:10.1016/S0378-1127(99)00032-8

    Article  Google Scholar 

  • Oddvar S, Wielgolsky FE, Moe B (1998) Biomass and chemical composition of common forest plants in response to fire in western Norway. J Veg Sci 9:501–510. doi:10.2307/3237265

    Article  Google Scholar 

  • Oechel WC, Hastings SJ (1983) The effects of fire on photosynthesis in chaparral resprouts. In: Kruger FJ, Mitchell JUM, Jarvis DT (eds) Mediterranean type ecosystems. Ecological studies, vol 43. Springer, Berlin, pp 274–285

    Google Scholar 

  • Ojima DS, Schimel DS, Parton WJ, Owensby CE (1994) Long- and short-term effects of fire on nitrogen cycling in tallgrass prairie. Biogeochemistry 24:67–84. doi:10.1007/BF02390180

    Article  Google Scholar 

  • Pausas JG, Gimeno T, Vallejo R (2002) Fire severity and pine regeneration in the eastern Iberian Peninsula. In Viegas XD (ed) Forest fires research conference 2002. Millpress, The Netherlands

    Google Scholar 

  • Persiani AM, Maggi O, Casado MA, Pineda FD (1998) Diversity and variability in soil fungi from a disturbed tropical rain forest. Mycologia 90(2):206–214. doi:10.2307/3761296

    Article  Google Scholar 

  • Persiani AM, Maggi O, Castelli G (2002) Biodiversity and composition of post-fire soil microfungal communities of a Mediterranean maquis (Southern Italy). In: Trabaud L, Prodon R (eds) Fire and biological processes. Backhuys Publishers, Leiden, pp 163–171

    Google Scholar 

  • Ponton S, Flanagan LB, Alstad KP, Johnson BG, Morgenstern K, Kljun N, Black A, Barr AG (2006) Comparison of ecosystem water-use efficiency among Douglas-fir forest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Glob Change Biol 12(2):294–310. doi:10.1111/j.1365-2486.2005.01103.x

    Article  Google Scholar 

  • Portis AR, Heldt HW (1976) Light-dependent changes of the Mg2+ concentration in the stroma in relation to the Mg2+ depending of CO2 fixation in intact chloroplasts. Biochim Biophys Acta 449:434–446. doi:10.1016/0005-2728(76)90154-7

    Article  PubMed  CAS  Google Scholar 

  • Radin JW (1984) Stomatal responses to water stress and to abscisic acid in phosphorus-deficient cotton plants. Plant Physiol 76:392–394. doi:10.1104/pp.76.2.392

    Article  PubMed  CAS  Google Scholar 

  • Radin JW, Eidenbock MP (1986) Carbon accumulation during photosynthesis in leaves of nitrogen- and phosphorous-stressed cotton. Plant Physiol 82:869–871. doi:10.1104/pp.82.3.869

    Article  PubMed  CAS  Google Scholar 

  • Romanyà J, Casals P, Vallejo VR (2001) Short-term effects of fire on soil nitrogen availability in Mediterranean grasslands and shrublands growing in old fields. For Ecol Manag 147(1):39–53. doi:10.1016/S0378-1127(00)00433-3

    Article  Google Scholar 

  • Ruiz-Lozano JM, Azcòn R (1995) Hyphal contribution to water uptake in mycorrhizal plants as affected by the fungal species and water status. Physiol Plant 95:472–478. doi:10.1111/j.1399-3054.1995.tb00865.x

    Article  CAS  Google Scholar 

  • Rutigliano FA, D’Ascoli R, De Marco A, Virzo De Santo A (2002) Soil microbial community as influenced by experimental fires of different intensities. In: Trabaud L, Prodon R (eds) Fire and biological processes. Backhuys Publishers, Leiden, pp 137–149

    Google Scholar 

  • Sanchez-Diaz M, Pardo M, Antolìn M, Pena J, Aguirreolea J (1990) Effect of water stress on photosynthetic activity in the Medicago-Rhizobium–Glomus symbiosis. Plant Sci 71:215–221. doi:10.1016/0168-9452(90)90011-C

    Article  Google Scholar 

  • Saruwatari MW, Davis SD (1989) Tissue water relation of the chaparral shrub species after wildfire. Oecologia 80:303–308. doi:10.1007/BF00379031

    Article  Google Scholar 

  • Siegel S, Castellan NJ (1988) Nonparametric statistics for the behavioral sciences. McGraw-Hill, New York

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    PubMed  CAS  Google Scholar 

  • Tilman D, Knops J, Wedin D, Reich P, Richie M, Siemann E (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302. doi:10.1126/science.277.5330.1300

    Article  CAS  Google Scholar 

  • Trabaud L (1983) The effects of different fire regimes on soil nutrient levels in Quercus coccifera garrigue. In: Kruger FJ, Mitchell DT, Jarvis J (eds) Mediterranean type ecosystems. The role of nutrients. Springer-Verlag, Berlin, pp 233–243

    Google Scholar 

  • Trabaud L, Methy M (1988) Modifications dans le système photosynthetique de réponses apparaissant après feu de deux espèces ligneuses dominantes des garrigues mediterranéennes. Acta Oecol Oecolog Plant 9:229–243

    Google Scholar 

  • Vázquez FJ, Acea MJ, Carballas T (1993) Soil microbial population after wildfire. FEMS Microbiol Ecol 13:93–104. doi:10.1016/0168-6496(93)90027-5

    Google Scholar 

  • Vilarino A, Arines J (1991) Numbers and viability of vesicular-arbuscular fungal propagules in field soil samples after wildfire. Soil Biol Biochem 23:1083–1087. doi:10.1016/0038-0717(91)90048-O

    Article  Google Scholar 

  • Vitale M, Capogna F, Manes F (2007) Resilience assessment on Phillyrea angustifolia L. maquis undergone to experimental fire through a big-leaf modelling approach. Ecol Modell 203:387–394. doi:10.1016/j.ecolmodel.2006.12.004

    Article  Google Scholar 

  • Walker B, Kinzing A, Langridge J (1999) Plant attribute diversity, resilience, and ecosystem function: the nature and significance of dominant and minor species. Ecosystems (NY, Print) 2:95–113. doi:10.1007/s100219900062

    Article  Google Scholar 

  • Wan S, Hui D, Luo Y (2001) Fire effects on nitrogen pools and dynamics in terrestrial ecosystems: a meta-analysis. Ecol Appl 11:1349–1365. doi:10.1890/1051-0761(2001)011[1349:FEONPA]2.0.CO;2

    Article  Google Scholar 

  • Wardle DA (2002) Communities and ecosystems: linking the above-ground and below-ground components. Princeton University Press, New Jersey

    Google Scholar 

  • White PS, Jentsch A (2000) The search for generality in studies of disturbance and ecosystem dynamics. In: Esser K, Luttge U, Kadereit JW, Beyschlag W (eds) Progress in Botany. Springer-Verlag, Berlin, pp 399–450

    Google Scholar 

  • Wicklow DT (1988) Parallels in the development of post-fire fungal and herb communities. Proc R Soc Edinb, Ser B 94B:87–95

    Google Scholar 

  • Wicklow DT, Zak JC (1979) Ascospore germination of carbonicolous ascomycetes in fungistatic soils: an ecological interpretation. Mycologia 71:238–242. doi:10.2307/3759150

    Article  Google Scholar 

  • Woodward FI, Osborne CP (2000) The representation of root processes in models addressing the responses of vegetation to global change. New Phytol 147:223–232. doi:10.1046/j.1469-8137.2000.00691.x

    Article  CAS  Google Scholar 

  • Zak JC (1992) Response of soil fungal communities to disturbance. In: Carroll G, Wicklow DT (eds) The fungal community. Its organization and role in the ecosystem. Marcel Dekker, New York, pp 403–425

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Stazione del Corpo Forestale of Castel Volturno Nature Reserve. This research was supported by grants from the Italian Ministry of University and Scientific Research (MURST-COFIN 1999), and the National Research Council (CNR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Capogna.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Capogna, F., Persiani, A.M., Maggi, O. et al. Effects of different fire intensities on chemical and biological soil components and related feedbacks on a Mediterranean shrub (Phillyrea angustifolia L.). Plant Ecol 204, 155–171 (2009). https://doi.org/10.1007/s11258-009-9579-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11258-009-9579-2

Keywords

Navigation