Skip to main content
Log in

A viewpoint on the use of microalgae as an alternative feedstuff in the context of pig and poultry feeding—a special emphasis on tropical regions

  • Reviews
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

With the current increase in meat and animal products consumption, there is a need to make production systems more sustainable. The use of microalgae in monogastric feeds, replacing widely used conventional feedstuffs such corn and soybean, can be a solution to overcome this problem. Several studies have shown promising results in the use of microalgae in feeding of both pigs and poultry. However, there are several important constraints associated to the production of microalgae. Such constraints are particularly limiting in the context of tropical regions. Research and scientific development on microalgae production systems are thus essential so that may be widely used in monogastric feeding. Herein, we conduct an overview of the major findings in the use of microalgae in the context of monogastric feeding and analyse the major constraints associated to its production and use, particularly in the specific context of tropical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  • Altman, B. A., Neumann, C., Rothstein, S., Liebert, F. and Mörlein, D. 2019. Do dietary soy alternatives lead to pork quality improvements or drawbacks? A look into micro-alga and insect protein in swine diets. Meat Science, 153, 26-34.

    Article  CAS  Google Scholar 

  • Amin, S. 2009. Review on biofuel oil and gas production processes from microalgae. Energy Conversion and Management, 50 (7), 1834-1840. https://doi.org/10.1016/j.enconman.2009.03.001.

  • Andriola, Y. T., Moreira, F., Anastácio, E., Camelo, F. A., Silva, A. C., Varela, A. S., Gheller, S. M. M., Goularte, K. L., Corcini, C. D. and Lucia, T. 2018. Boar sperm quality after supplementation of diets with omega-3 polyunsaturated fatty acids extracted from microalgae. Andrologia, 50, e12825.

  • Anderson, D. W., Tang, C.-S. and Ross, E. 1991. The xanthophylls of Spirulina and their effect on egg yolk pigmentation. Poultry Science, 70, 115-119.

    Article  CAS  Google Scholar 

  • Ao, T., Macalintal, L. M., Paul, M. A., Pescatore, A. J., Cantor, A. H., Ford, M. J., Timmons, B. and Dawson, K. A. 2015. Effects of supplementing microalgae in laying hen diets on productive performance, fatty-acid profile, and oxidative stability of eggs. Journal of Applied Poultry Research, 24, 394-400.

    Article  CAS  Google Scholar 

  • Barata, A. F. L. 2016. Microalgas: produção económica e ambientalmente sustentável. Chapter 3, 9-22. Faculdade de Ciências da Universidade de Lisboa

  • Becker, E. W. Microalgae: biotechnology and microbiology. Cambridge: Cambridge University Press, 1994. 301.

    Google Scholar 

  • Benemann, J.R. 1997. CO2 mitigation with microalgae systems. Energy Converse Management. 38, 475-479.

    Article  Google Scholar 

  • Cardinaletti, G., Messina, M., Bruno, M., Tulli, F., Poli, B. M., Giorgi, G., Chini-Zittelli, G., Tredici, M. and Tibaldi, E. 2018. Effects of graded levels of a blend of Tisochrysis lutea and Tetraselmis suecica dried biomass on growth and muscle tissue composition of European sea bass (Dicentrarchus labrax) fed diets low in fish meal and oil. Aquaculture, 485, 173-182.

    Article  CAS  Google Scholar 

  • Chisti, Y. 2004. Microalgae: our marine forests. Book reviews. In: Richmond, A. (Ed). Handbook of microalgal culture: biotechnology and applied phycology. Oxford: Blackwell Science, 2004. 566.

  • Choi, H., Jung, S. K., Kim, J. S., Kim, K. W., Oh, K. B., Lee, P. Y. and Byun, S. J. 2017. Effects of dietary recombinant chlorella supplementation on growth performance, meat quality, blood characteristics, excreta microflora, and nutrient digestibility in broilers. Poultry Science, 96, 710-716.

    Article  CAS  PubMed  Google Scholar 

  • Demirbas, A. 2011. Biodiesel from oilgae, biofixation of carbon dioxide by microalgae: A solution to pollution problems. Appl. Energy, vol. 88, no. 10, 3541–3547.

    Article  CAS  Google Scholar 

  • European Comission. 2019. https://ec.europa.eu/info/food-farming-fisheries/animals-and-animal-products/animal-products_en. Accessed 6 Feb 2021.

  • Evans, A. M., Smith, D. L. and Moritz, J. S. 2015. Effects of algae incorporation into broiler starter diet formulations on nutrient digestibility and 3 to 21 d bird performance. Journal of Applied Poultry Research, 24, 206-214.

    Article  CAS  Google Scholar 

  • FAO. 2009. Algae-based Biofuels: A Review of Challenges and Opportunities for Developing Countries, 29-42.

  • FAO. 2010. The wealth of waste – The economics of wastewater use in agriculture. FAO Water Reports, 35, 1020-1203.

  • FAO. 2011. World Livestock 2011 - Livestock in food security. 13-22. In: McLeod, A. (ed.). Rome, FAO.

  • FAO. 2018. The state of the world fisheries and aquaculture - Meeting the sustainable development goals, Rome, Italy, FAO, Fisheries and Aquaculture Department.

    Google Scholar 

  • Guill-Guerrero, J.L., Navarro-Juárez, R., López-Martínez, J.C., Campra-Madrid, P., and Rebolloso-Fuentes, M.M. 2004. Functional properties of the biomass of the three microalgal species. Journal of Food Engineering, 65, 511-517.

    Article  Google Scholar 

  • Gibbs, H. K., Rausch, L., Munger, J., Schelly, I., Morton, D. C., Noojipady, P., Soares-filho, B., Barreto, P., Micol, L. and Walker, N. F. 2015. Brazil's soy moratorium. Science, 347, 377-378.

    Article  CAS  PubMed  Google Scholar 

  • Ginzberg, A., Cohen, M., Sod-moriah, U. A., Shany, S., Rosenshtrauch, A. and Arad, S. 2000. Chickens fed with biomass of the red microalga Porphyridium sp. have reduced blood cholesterol level and modified fatty acid composition in egg yolk. Journal of Applied Phycology, 12, 325-330.

    Article  Google Scholar 

  • Hemaiswarya S., Raja R., Kumar R., Ganesan V. and Anbazhagan, C. 2011. Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746

    Article  Google Scholar 

  • Hintz, H. F. and Heitman, H. 1967. Sewage-grown algae as a protein supplement for swine. Animal Production, 9, 135-140.

    Google Scholar 

  • Heo, J. M., Opapeju, F. O., Pluske, J. R., Kim, J. C., Hampson, D. J. and Nyachoti, C. M. 2013. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds: Feeding strategies without using in-feed antibiotics. Journal of Animal Physiology and Animal Nutrition, 97, 207-237.

    Article  CAS  PubMed  Google Scholar 

  • Hopkins, D. L., Clayton, E. H., Lamb, T. A., Van de Ven, R. J., Refshauge, G., Kerr, M. J., Bailes, K., Lewandowski, P. and Ponnampalam, E. N. 2014. The impact of supplementing lambs with algae on growth, meat traits and oxidative status. Meat Science, 98, 135-141.

    Article  CAS  PubMed  Google Scholar 

  • Iira, R. A., Martins, M. A., Machado, M. F., Corrêdo, L. de P., and de Matos, A. T. 2012. Nota técnica: as microalgas como alternativa à produção de biocombustíveis. Revista Engenharia Na Agricultura, 20(5), 389–403. https://doi.org/10.13083/reveng.v20i5.323.

  • Kang, H. K., Salim, H. M., Akter, N., Kim, D. W., Kim, J. H., Bang, H. T., Kim, M. J., Na, J. C., Hwangbo, J., Choi, H. C. and Suh, O. S. 2013. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. Journal of Applied Poultry Research, 22, 100-108.

    Article  CAS  Google Scholar 

  • Kiron, V., Sørensen, M., Huntley, M., Vasanth, G. K., Gong, Y., Dahle, D. and Palihawadana, A. M. 2016. Defatted Biomass of the Microalga, Desmodesmus sp., Can Replace Fishmeal in the Feeds for Atlantic salmon. Frontiers in Marine Science, 3, 67. https://www.frontiersin.org/article/10.3389/fmars.2016.00067.

  • Kralik, Z., Kralik, G., Grčević, M., Hanžek, D. and Margeta, P. 2020. Microalgae Schizochytrium limacinum as an alternative to fish oil in enriching table eggs with n-3 polyunsaturated fatty acids. Journal of the Science of Food and Agriculture, 100, 587-594.

    Article  CAS  PubMed  Google Scholar 

  • Lamminen, M., Halmemies-Beauchet-Filleau, A., Kokkonen, T., Simpura, I., Jaakkola, S. and Vanhatalo, A. 2017. Comparison of microalgae and rapeseed meal as supplementary protein in the grass silage based nutrition of dairy cows. Animal Feed Science and Technology, 234, 295-311.

    Article  CAS  Google Scholar 

  • Lamminen, M., Halmemies-Beauchet-Filleau, A., Kokkonen, T., Jaakkola, S. and Vanhatalo, A. 2019. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Animal Feed Science and Technology, 247, 112-126.

    Article  CAS  Google Scholar 

  • Li, Y., Horsman, M., Wu, N., Lan, C. Q., and Dubois-Calero, N. 2008. Biofuels from Microalgae. Biotechnol. Prog., vol. 24, no. 1, 815–820.

    CAS  PubMed  Google Scholar 

  • Lum, K. K., Kim, J. and Lei, X. G. 2013. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4, 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Madeira, M. S., Cardoso, C., Lopes, P. A., Coelho, D. and Afonso, C. 2017. Microalgae as feed ingredients for livestock production and meat quality: A review. Livestock Science, 205, 111-121.

    Article  Google Scholar 

  • Manor, M. L., Derksen, T. J., Magnuson, A. D., Raza, F. and Lei, X. G. 2019. Inclusion of dietary defatted microalgae dose-dependently enriches ω-3 fatty acids in egg yolk and tissues of laying hens. Journal of Nutrition, 149, 942-950.

    Article  Google Scholar 

  • Marriott, N. G., Garrett, J. E., Sims, M. D. & Abril, J. R. 2002. Performance characteristics and fatty acid composition of pigs fed a diet with docosahexaenoic acid. Journal of Muscle Foods, 13, 265-277.

    Article  Google Scholar 

  • Martins, C. F., Assunção, J. P., Santos, D. M. S., Madeira, M. S. M., Alfaia, C. M. R. P. M., Lopes, P. A. A. B., Coelho, D. F. M., Lemos, J. P. C., Almeida, A. M., Prates, J. A. M. and Freire, J. P. B. 2020. Effect of dietary inclusio of Spirulina on production performance, nutrient digestibility and meat quality traits on post-weaning piglets. Animal Physiology and Animal Nutrition. 00:1-13.

    Google Scholar 

  • Matos, C. T., Santos, M., Nobre, B. P. and Gouveia, L. 2013. Nannochloropsis sp. biomass recovery by Electro-Coagulation for biodiesel and pigment production. Bioresour. Technol., vol. 134, 219–226.

    Article  CAS  PubMed  Google Scholar 

  • Mirzaie, S., Zirak-khattab, F., Hosseini, S. A. and Donyaei-darian, H. 2018. Effects of dietary Spirulina on antioxidant status, lipid profile, immune response and performance characteristics of broiler chickens reared under high ambient temperature. Asian-Australasian Journal of Animal Sciences, 31, 556-563.

    Article  CAS  PubMed  Google Scholar 

  • Molina-grima, E., Acién, F.F.G., Camacho, F. G., and Christi, Y. 1999. Photobioreactors light regime, mass transfer and scaleup. Journal of Biotechnology, no.70, 231–247.

  • Moran, C. A., Morlacchini, M., Keegan, J. D. and Fusconi, G. 2018. Dietary supplementation of finishing pigs with the docosahexaenoic acid-rich microalgae, Aurantiochytrium limacinum: effects on performance, carcass characteristics and tissue fatty acid profile. Asian-Australasian journal of animal sciences, 31, 712-720.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy, E. M., Stanton, C., Brien, C. O., Murphy, C., Holden, S., Murphy, R. P., Varley, P., Boland, M. P. and Fair, S. 2017. The effect of dietary supplementation of algae rich in docosahexaenoic acid on boar fertility. Theriogenology, 90, 78-87.

    Article  CAS  PubMed  Google Scholar 

  • Neumann, C., Velten, S. and Liebert, F. 2018. N balance studies emphasize the superior protein quality of pig diets at high inclusion level of algae meal (Spirulina platensis) or insect meal (Hermetia illucens) when adequate amino acid supplementation is ensured. Animals, 8, 172.

    Article  PubMed Central  Google Scholar 

  • Nogueira, N.S. 2010. Análise Delphi e sWot das matérias-primas de produção de Biodiesel: soja, mamona e microalga. Dissertação. Mestrado em Tecnologia de Processos Químicos e Bioquímicos. Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ.

    Google Scholar 

  • Park, J. H., Upadhaya, S. D. and Kim, I. H. 2015. Effect of dietary marine microalgae (Schizochytrium) powder on egg production, blood lipid profiles, egg quality, and fatty acid composition of egg yolk in layers. Asian-Australasian Journal of Animal Sciences, 28, 391-397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, J. H., Lee, S. I. and Kim, I. H. 2018. Effect of dietary Spirulina (Arthrospira) platensis on the growth performance, antioxidant enzyme activity, nutrient digestibility, cecal microflora, excreta noxious gas emission, and breast meat quality of broiler chickens. Poultry Science, 97, 2451-2459.

    Article  CAS  PubMed  Google Scholar 

  • Qiao, H., Wang, H., Song, Z., Ma, J., Li, B., Liu, X., Zhang, S., Wang, J. and Zhang, L. 2014. Effects of dietary fish oil replacement by microalgae raw materials on growth performance, body composition and fatty acid profile of juvenile olive flounder, Paralichthys olivaceus. Aquaculture Nutrition, 20, 646-653.

    Article  CAS  Google Scholar 

  • Richmond, A. 2004. Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science Ltd, Oxford, Uk.

  • Ritchie, H. and Roser, M. 2017. Meat and Dairy Production. Oxford Martin School. Published online at OurWorldInData.org. https://ourworldindata.org/meat-production.

  • Sardi, L., Martelli, G., Lambertini, L., Parisini, P. and Mordenti, A. 2006. Effects of a dietary supplement of DHA-rich marine algae on Italian heavy pig production parameters. Livestock Science, 103, 95-103.

    Article  Google Scholar 

  • Saeid, A., Chojnacka, K., Opaliński, S. and Korczyński, M. 2016. Biomass of Spirulina maxima enriched by biosorption process as a new feed supplement for laying hens. Algal Research, 19, 342-347.

    Article  Google Scholar 

  • Schenk, P. M., Thomas-Hall, S. R., Stephens, Marx, E., U. C., Mussgnug, Posten, J. H., C., Kruse, O., and Hankamer, B. 2008. Second Generation Biofuels: High-Efficiency Microalgae for Biodiesel Production. BioEnergy Res., vol. 1, no. 1, 20–43.

    Article  Google Scholar 

  • Shanmugapriya, B., Babu, S. S., Hariharan, T., Sivaneswaran, S., Anusha, M. B. and College, C. N. 2015. Research article dietary administration of Spirulina platensis as probiotics on growth performance and histopathology in broiler chicks. International Journal of Recent Scientific Research, 6, 2650-2653.

    Google Scholar 

  • Schmitz, R., Magro, C. D. and Cola, L. M. 2012. Environmental Applications of Microalgae. Ciatec – Upf, vol.4 (1), 48–60.

  • Sørensen, M., Gong, Y., Bjarnason, F., Vasanth, G. K., Dahle, D., Huntley, M. and Kiron, V. 2017. Nannochloropsis oceania-derived defatted meal as an alternative to fishmeal in Atlantic salmon feeds. Plos One, 12, e0179907.

  • Tacon, A. G. J. and Metian, M. 2015. Feed Matters: Satisfying the Feed Demand of Aquaculture. Reviews in Fisheries Science & Aquaculture, 23, 1-10.

    Article  Google Scholar 

  • Tibaldi, E., Chini Zittelli, G., Parisi, G., Bruno, M., Giorgi, G., Tulli, F., Venturini, S., Tredici, M. R. and Poli, B. M. 2015. Growth performance and quality traits of European sea bass (D. labrax) fed diets including increasing levels of freeze-dried Isochrysis sp. (T-ISO) biomass as a source of protein and n-3 long chain PUFA in partial substitution of fish derivatives. Aquaculture, 440, 60-68.

    Article  CAS  Google Scholar 

  • Tibbetts, S. M. 2018. The Potential for ‘Next-Generation’, Microalgae-Based Feed Ingredients for Salmonid Aquaculture in Context of the Blue Revolution. In: Jacob-Lopes, E., Zepka, L. Q. and Queiroz, M. I. (eds.) Microalgal Biotechnology. IntechOpen. https://doi.org/10.5772/intechopen.73551; https://www.intechopen.com/books/microalgal-biotechnology/the-potential-for-next-generation-microalgae-based-feedingredients-for-salmonid-aquaculture-in-cont.

  • Tonnac, A. D., Guillevic, M., Mourot, J. and Mag, E. L. 2018. Fatty acid composition of several muscles and adipose tissues of pigs fed n-3 PUFA rich diets. Meat Science, 140, 1-8.

    Article  PubMed  CAS  Google Scholar 

  • United Nations (UN). 2019.https://populationmatters.org/the-facts/the-numbers?gclid=EAIaIQobChMI5dP99fyE7wIViKztCh0FaQCoEAAYASAAEgKbo_D_BwE.

  • Valente, L. M. P., Custódio, M., Batista, S., Fernandes, H. and Kiron, V. 2019. Defatted microalgae (Nannochloropsis sp.) from biorefinery as a potential feed protein source to replace fishmeal in European sea bass diets. Fish Physiology and Biochemistry, 45, 1067-1081.

    Article  CAS  PubMed  Google Scholar 

  • Valente, L. M. P., Cabrita, A. R. J., Maia, M. R. G., Valente, I. M., Engrola, S., Fonseca, A. J. M., Ribeiro, D. M., Lordelo, M., Martins, C. F., Cunha, L. F., Almeida, A. M. and Freire, J. P. B. 2020. Microalgae as feed ingredients for livestock production and aquaculture. Microalgae: Cultivation, Recovery of Compounds and Applications, Chapter 9, 239-312, Galanakis, C. (ed.). ScienceDirect.

  • Venkataraman, L. V., Somasekaran, T. and Becker, E. W. 1994. Replacement value of blue-green alga (Spirulina platensis) for fishmeal and a vitamin-mineral premix for broiler chicks. British Poultry Science, 35, 373-381.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. Y., Li, M. Z., Filer, K., Xue, Y., Ai, Q. H. and Mai, K. S. 2017. Evaluation of Schizochytrium meal in microdiets of Pacific white shrimp (Litopenaeus vannamei) larvae. Aquaculture Research, 48, 2328-2336.

    Article  CAS  Google Scholar 

  • Yan, L., Lim, S. U. and Kim, I. H. 2012. Effect of fermented Chlorella supplementation on growth performance, nutrient digestibility, blood characteristics, fecal microbial and fecal noxious gas content in growing pigs. Asian-Australasian Journal of Animal Sciences, 25, 1742-1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan, L. and Kim, I. H. 2013. Effects of dietary ω-3 fatty acid-enriched microalgae supplementation on growth performance, blood profiles, meat quality, and fatty acid composition of meat in broilers. Journal of Applied Animal Research, 41, 392-397

    Article  CAS  Google Scholar 

Download references

Funding

Financial support from FCT (Fundação para a Ciência e a Tecnologia, Lisboa, Portugal) in the form of infrastructural funding to LEAF (UID/AGR/04129) and the PhD grant (SFRH/BD/143992/2019) awarded to author DMR is acknowledged. Authors AMA, JPBF and AAMC acknowledge funding from project ALGAVALOR (reference 35234) co-funded by the Compete 2020 line of the Portugal 2020 program and the FEDER fund of the European Union.

Author information

Authors and Affiliations

Authors

Contributions

AMA and JPBF conceptualized this review; AAMC, CFM, DMR, DFPC and ML conducted the literature search, data analysis and interpretation. AAMC, JPBF and AMA wrote the manuscript. All authors agreed on the final version of the manuscript.

Corresponding author

Correspondence to André M. de Almeida.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaves, A.A.M., Martins, C.F., Carvalho, D.F.P. et al. A viewpoint on the use of microalgae as an alternative feedstuff in the context of pig and poultry feeding—a special emphasis on tropical regions. Trop Anim Health Prod 53, 396 (2021). https://doi.org/10.1007/s11250-021-02800-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11250-021-02800-5

Keywords

Navigation