Skip to main content

Advertisement

Log in

Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives

  • Water Pollution (G Toor and L Nghiem, Section Editors)
  • Published:
Current Pollution Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this paper, we critically review the current state of nutritional management strategies to reduce methane emissions resulting from enteric fermentation in livestock production. In this context, it highlights the novel strategy regarding the use of macroalgal- and microalgal-derived feed additives.

Recent Findings

Several feed management strategies for ruminants focus on the inclusion of nutritional supplements, increasing proportion of starch, or supplementation with high-energy lipids. These strategies aim to improve animal productivity, whilst at the same time reduce methane emissions. Algae supplements are currently investigated as novel ingredients for decreasing methanogenesis, with the potential production of algal biomass also contributing to reducing greenhouse gas emissions. Thus, utilisation of algal biomass as a feed concentrate in dietary supplementation presents a sustainable and environmentally friendly strategy.

Summary

This review summarises the current stage of research on dietary strategies and their influences on the metabolic processes during enteric fermentation. This information is essential for developing strategies to mitigate methane emissions in the livestock industry. We specifically present the opportunities that algae could offer as a feed additive for methanogenic reduction in cattle. The data compiled from the peer-reviewed literature revealed synergistic effects of algal biomass on methane reduction and animal productivity. However, the challenges regarding the mass cultivation of macro- and microalgae were noticed. Considering the diversity of algal species, future research should increase screening efforts to include more species and dosage evaluation, along with efforts to see if such effects are sustained over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Herrero M, Henderson B, Havlík P, Thornton PK, Conant RT, Smith P, et al. Greenhouse gas mitigation potentials in the livestock sector. Nat Clim Chang. 2016;6:452–61.

    Google Scholar 

  2. FAO. Livestock in the balance. Rome: Food and Agriculture Organization of the United Nations; 2009.

    Google Scholar 

  3. Gerland P, Raftery AE, Ševčíková H, Li N, Gu D, Spoorenberg T, et al. World population stabilization unlikely this century. Science. 2014;346(6206):234–7.

    CAS  Google Scholar 

  4. Alexandratos N, Bruinsma J. World agriculture: towards 2030/2050: the 2012 revision. ESA Working paper No. 12-03. Rome: FAO; 2012.

    Google Scholar 

  5. Pretty J, Sutherland WJ, Ashby J, Auburn J, Baulcombe D, Bell M, et al. The top 100 questions of importance to the future of global agriculture. Int J of Agr Sustain. 2010;8(4):219–36.

    Google Scholar 

  6. Gerber PJ, Steinfeld H, Henderson B, Mottet A, Opio C, Dijkman J, et al. Tackling climate change through livestock – a global assessment of emissions and mitigation opportunities. Rome: Food and Agriculture Organization of the United Nations (FAO); 2013.

    Google Scholar 

  7. Cottle DJ, Nolan JV, Wiedemann SG. Ruminant enteric methane mitigation: a review. Anim Prod Sci. 2011;51:491–514.

    CAS  Google Scholar 

  8. Commonwealth of Australia. Quarterly update of Australia’s national greenhouse gas inventory: March 2019. 2019.

  9. De Vries M, de Boer IJ. Comparing environmental impacts for livestock products: a review of life cycle assessments. Livest Sci. 2010;128(1–3):1–11.

    Google Scholar 

  10. MLA. CN30. Meat & livestock Australia. 2020. https://www.mla.com.au/research-and-development/Environment-sustainability/cn30/#. 2020.

  11. Sejian V, Lal R, Lakritz J, Ezeji T. Measurement and prediction of enteric methane emission. Int J Biometeorol. 2011;55(1):1–16.

    Google Scholar 

  12. Ellis JL, Kebreab E, Odongo NE, McBride BW, Okine EK, France J. Prediction of methane production from dairy and beef cattle. J Dairy Sci. 2007;90(7):3456–66.

    CAS  Google Scholar 

  13. Johnson KA, Johnson DE. Methane emissions from cattle. J Anim Sci. 1995;73:2483–92.

    CAS  Google Scholar 

  14. Maccarana L, Cattani M, Tagliapietra F, Bailoni L, Schiavon S. Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J Anim Sci Biotechno. 2016;7(54):1–8.

    Google Scholar 

  15. Grossi G, Goglio P, Vitali A, Williams AG. Livestock and climate change: impact of livestock on climate and mitigation strategies. Anim Front. 2019;9(1):69–76.

    Google Scholar 

  16. Beauchemin KA, Kreuzer M, O’Mara F, McAllister TA. Nutritional management for enteric methane abatement: a review. Aus J of Exp Agric. 2008;48:21–7.

    CAS  Google Scholar 

  17. Sutton JD, Dhanoa MS, Morant SV, France J, Napper DJ, Schuller E. Rates of production of acetate, propionate and butyrate in the rumem of lactating dairy cows given normal and low-roughage diets. J Dairy Sci. 2003;86:3620–33.

    CAS  Google Scholar 

  18. Monteny G-J, Bannink A, Chadwick D. Greenhouse gas abatement strategies for animal husbandry. Agric Ecosyst Environ. 2006;112:163–70.

    CAS  Google Scholar 

  19. Golder HM, Celi P, Rabiee AR, Heuer C, Bramley EDW, et al. Effects of grain, fructose, and histidine on ruminal pH and fermentation products during an induced subacute acidosis protocol. J Dairy Sci. 2012;95(4):1971–82.

    CAS  Google Scholar 

  20. Grainger C, Beauchemin KA. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim Feed Sci Technol. 2011;166–167:308–20.

    Google Scholar 

  21. Petri RM, Neubauer V, Humer E, Kröger I, Reisinger N, Zebeli Q. Feed additives differentially impact the epimural microbiota and host epithelial gene expression of the bovine rumen fed diets rich in concentrates. Front Microbiol. 2020;11(119):1–15.

    Google Scholar 

  22. • Machado L, Magnuson B, Paul NA, de Nys R, Tomkins N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One. 2014. First paper to identify the red alga that reduces methanogenesis.

  23. Sucu E. Effects of microalgae species on in vitro rumen fermentation pattern and methane production. Ann Anim Sci. 2020;20(1):207–18.

    CAS  Google Scholar 

  24. Ruiz-González A, Debruyne S, Dewanckele L, Escobar M, Vandaele L, Van Den Broeck W, et al. Supplementation of DHA-Gold pre and/or postnatally to goat kids modifies in vitro methane production and rumen morphology until 6 mo old. J Anim Sci. 2018;96(11).

  25. Gomaa AS, Kholif AE, Kholif AM, Salama R, El-Alamy HA, Olafadehan OA. Sunflower oil and Nannochloropsis oculata microalgae as sources of unsaturated fatty acids for mitigation of methane production and enhancing diets’ nutritive value. J Agric Food Chem. 2018;66:1751–9.

    CAS  Google Scholar 

  26. •• Altomonte I, Salari F, Licitra R, Martini M. Use of microalge in ruminant nutrition and implication on milk quality - a review. Livest Sci. 2018;214:25–35 Review of the quality of milk by feeding mircoalage.

    Google Scholar 

  27. Hurley AM, Lopez-Villalobos N, McParland S, Lewis E, Kennedy E, O’Donovan M, et al. Characteristics of feed efficiency within and across lactation in dairy cows and the effect of genetic selection. J Dairy Sci. 2018;101(2):1267–80.

    CAS  Google Scholar 

  28. Makkar HPS, Beever D. Optimization of feed use efficiency in ruminant production systems. Proceedings of the FAO Symposium, 27 November 2012, Bangkok, Thailand. FAO Animal Production and Health Proceedings, No. 16. Rome, FAO and Asian-Australasian Association of Animal Production Societies. 2013.

  29. De Boer IJM, Cederberg C, Eady S, Gollnow S, Kristensen T, Macleod M, et al. Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability assessment. Curr Opin Env Sust. 2011;3:423–31.

    Google Scholar 

  30. • Gill M, Smith P, Wilkinson JM. Mitigating climate change: the role of domestic livestock. Animal. 2010;4(3):323–33 Discusses two competing challenges regarding the negative contribution of livestock to the environment against the positive benefit in terms of food security.

    CAS  Google Scholar 

  31. Sejian V, Shekhawat I, Ujor V, Ezeji T, Lakritz J, Lal R. Global climate change: enteric methane reduction strategies in livestock. In: Sejian V, Naqvi SMK, Ezeji T, Lakritz J, Lal R, editors. Environmental stress and amelioration in livestock production. Berlin: Springer; 2012. p. 469–99.

    Google Scholar 

  32. Choudhury PK, Salem AZM, Jena R, Kumar S, Singh R, Puniya AK. Rumen microbiology: an overview. In: Puniya AK, Singh R, Kamra DN, editors. Rumen microbiology: from evolution to revolution. New Delhi: Springer; 2015.

    Google Scholar 

  33. Van Lingen HJ, Plugge CM, Fadel JG, Kebreab E, Bannink A, Dijkstra J. Thermodynamic driving force of hydrogen on rumen microbial metabolism: a theoretical investigation. PLoS One. 2016;11(10):1–18.

    Google Scholar 

  34. Fonty G, Chaucheyras-Durand F. Effects and modes of action of live yeasts in the rumen. Biologia. 2006;61(6):741–50.

    CAS  Google Scholar 

  35. Boadi D, Benchaar C, Chiquette J, Masse D. Mitigation strategies to reduce enteric methane emissions from dairy cows: update review. Can J Anim Sci. 2004;84(3):319–35.

    Google Scholar 

  36. McAllister TA, Newbold CJ. Redirecting rumen fermentation to reduce methanogenesis. Aust J Exp Agric. 2008;48:7–13.

    CAS  Google Scholar 

  37. Liu H, Wang J, Wang A, Chen J. Chemical inhibitors of methanogenesis and putative applications. Appl Microbiol Biot. 2011;89:1333–40.

    CAS  Google Scholar 

  38. Moran J. How the rumen works. In: Moran J, editor. Tropical dairy farming: feeding management for small holder dairy farmers in the humid tropics. Landlinks Press; 2005.

  39. •• Hristov AN, Ott T, Tricarico J, Rotz A, Waghorn G, Adesogan A, et al. Mitigation of methane and nitrous oxide emissions from animal operations: III. A review of animal management mitigation options. J Anim Sci. 2013;91(11):5095–113 Review by leading experts in ruminant nutrition.

    CAS  Google Scholar 

  40. Capper JL, Cady RA, Bauman DE. The environmental impact of dairy production: 1944 compared with 2007. J Anim Sci. 2009;87(6):2160–7.

    CAS  Google Scholar 

  41. Pacheco D, Waghorn G, Janssen PH. Decreasing methane emissions from ruminants grazing forages: a fit with productive and financial realities. Anim Prod Sci. 2014;54:1141–54.

    CAS  Google Scholar 

  42. •• Hristov AN, Oh J, Firkins JL, Dijkman J, Kebreab E, Waghorn G, et al. Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J Anim Sci. 2013;91(11)):5045–69 Review by leading experts in ruminant nutrition.

    CAS  Google Scholar 

  43. Izaurralde RC, Thomson AM, Morgan JA, Fay PA, Polley HW, Hatfield JL. Climate impacts on agriculture: implications for forage and rangeland production. Agron J. 2011;103(2):371–81.

    Google Scholar 

  44. Rinne M, Jaakkola S, Huhtanen P. Grass maturity effects on cattle fed silage-based diets. 1. Organic matter digestion, rumen fermentation and nitrogen utilization. Anim Feed Sci Techno. 1997;67.

  45. Aschenbach JR, Zebeli Q, Patra AK, Greco G, Amasheh S, Penner GB. Symposium review: the importance of the ruminal epithelial barrier for a healthy and productive cow. J Dairy Sci. 2019;102:1866–82.

    CAS  Google Scholar 

  46. Ploger S, Stumpff F, Penner GB, Schulzke J-D, Gabel G, Martens H, et al. Microbial butyrate and its role for barrier function in the gastrointestinal tract. Ann N Y Acad Sci. 2012;1258:52–9.

    Google Scholar 

  47. McCormick ME, Redfearn DD, Ward JD, Blouin DC. Effect of protein source and soluble carbohydrate addition on rumen rermentation and lactation performance of Holstein cows. J Dairy Sci. 2001;84:1686–97.

    CAS  Google Scholar 

  48. Stern MD, Varga GA, Clark JH, Firkins JL, Huber JT, Palmquist DL. Evaluation of chemical and physical properties of feeds that affect protein metabolism in the rumen. J Dairy Sci. 1994;77:2762–86.

    CAS  Google Scholar 

  49. Clark JH, Klusmeyer TH, Cameron MR. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J Dairy Sci. 1992;75:2304–23.

    CAS  Google Scholar 

  50. Hook SE, Wright A-D, McBride BW. Methanogens: methane producers of the rumen and mitigation strategies. Archaea. 2010;2010(945785):1–11.

    Google Scholar 

  51. Moran J. Nutrient requirements of dairy cows. In: Moran J, editor. Tropical dairy farming: feeding management for small holder dairy farmers in the humid tropics. Landlinks Press; 2005: 51–59.

  52. Moran J. What is in feeds? In: Moran J, editor. Tropical dairy farming: feeding management for small holder dairy farmers in the humid tropics. Landlinks Press; 2005:27–39.

  53. Mckiernan B, editor. Full hand feeding of beef cattle -- quantities assessing the situation 2007.

  54. Slegers PM, Lösing MB, Wijffels RH, van Straten G, van Boxtel AJB. Scenario evaluation of open pond microalgae production. Algal Res. 2013;2(4):358–68.

    Google Scholar 

  55. Wild KJ, Trautmann A, Katzenmeyer M, Steingaß H, Posten C, Rodehutscord M. Chemical composition and nutritional characteristics for ruminants of the microalgae Chlorella vulgaris obtained using different cultivation conditions. Algal Res. 2019;38:101385.

    Google Scholar 

  56. Tavernari FDC, Roza LF, Surek D, Sordi C, Silva MLBD, Albino LFT, et al. Apparent metabolisable energy and amino acid digestibility of microalgae Spirulina platensis as an ingredient in broiler chicken diets. Br Poult Sci. 2018;59(5):562–7.

    CAS  Google Scholar 

  57. Lamminen M, Halmemies-Beauchet-Filleau A, Kokkonen T, Jaakkola S, Vanhatalo A. Different microalgae species as a substitutive protein feed for soya bean meal in grass silage based dairy cow diets. Anim Feed Sci Tech. 2019;247:112–26.

    CAS  Google Scholar 

  58. Milledge JJ, Harvey PJ. Potential process ‘hurdles’ in the use of macroalgae as feedstock for biofuel production in the British Isles. J Chem Technol Biot. 2016;91(8):2221–34.

    CAS  Google Scholar 

  59. •• Makkar HPS, Tran G, Heuzé V, Giger-Reverdin S, Lessire M, Lebas F, et al. Seaweeds for livestock diets: a review. Anim Feed Sci Tech. 2016;212:1–17 A review of seaweeds for livestock diets.

    CAS  Google Scholar 

  60. Ventura MR, Castañon JIR, McNab JM. Nutritional value of seaweed (Ulva rigida) for poultry. Anim Feed Sci Tech. 1994;49(1):87–92.

    Google Scholar 

  61. Vasal SK. The role of high lysine cereals in animal and human nutrition in Asia. Protein sources for the animal feed industry. Rome: Food and Agriculture Organization of the United Nations (FAO); 2004.

    Google Scholar 

  62. Victorian Government Department of Economic Development Jobs Transport and Resources. Drought feeding and management of beef cattle: a guide for farmers and land managers. Melbourne 2018.

  63. Karabulut A, Ozgur Ozcan C, Kamalak A, Canbolat O. Comparison of the nutritive value of a Turkey native forage, tumbleweed hay (Gundelia tournefortii L.), wheat straw and alfalfa hay using in situ and in vitro measurements with sheep. Arch Latinoam Prod Anim. 2006;14:78–83.

    Google Scholar 

  64. Foster S, McCuin G, Nelson D, Schultz B, Torell R. Alfalfa for beef cows. University of Nevada Cooperative Extension. 2009.

  65. El-Hack MEA, Alagawany M, Patra A, Abdel-Latif M, Ashour EA, Arif M, et al. Use of brewers dried grains as an unconventional feed ingredient in the diets of broiler chickens: a review. Adv Anim Vet Sci. 2019;7:218–24. https://doi.org/10.17582/journal.aavs/2019/7.3.218.224.

    Article  Google Scholar 

  66. Rutherglen DC. Feed value of selected foodstuffs AG0373. Agriculture Victoria 2002.

  67. Dalólio FS, Albino LFT, Rostagno HS, Silva DL, Xavier Júnior ML, Oliveira VD. Metabolizable energy and digestible amino acids of full-fat soybean without or with protease supplementation in diets for broilers. Cienc Agrotec. 2016;40:565–76.

    Google Scholar 

  68. Félix AP, Zanatta CP, Brito CBM, Sá Fortes CML, Oliveira SG, Maiorka A. Digestibility and metabolizable energy of raw soybeans manufactured with different processing treatments and fed to adult dogs and puppies. J Anim Sci. 2013;91(6):2794–801. https://doi.org/10.2527/jas.2011-4662.

    Article  Google Scholar 

  69. Preece KE, Hooshyar N, Zuidam NJ. Whole soybean protein extraction processes: a review. Innov Food Sci Emerg Tech. 2017;43:163–72.

    CAS  Google Scholar 

  70. Hymowitz T, Collins FI, Panczner J, Walker WM. Relationship between the content of oil, protein, and sugar in soybean Seed1. Agron J. 1972;64(5):613–6.

    CAS  Google Scholar 

  71. Stewart L. Using cotton byproducts in beef cattle diets, bulletin 1311. The University of Georgia, Cooperative Extension, Colleges of Agricultural and Environmental Sciences & Family and Consumer Services 2010.

  72. Meale SJ, McAllister TA, Beauchemin KA, Harstad OM, Chaves AV. Strategies to reduce greenhouse gases from ruminant livestock. Acta Agr Scand A-An. 2013;62(4):199–211.

    Google Scholar 

  73. Bateman HG, Jenkins TC. Influence of soybean oil in high fiber diets fed to nonlactating cows on ruminal unsaturated fatty acids and nutrient digestibility. J Dairy Sci. 1998;81:2451–8.

    CAS  Google Scholar 

  74. Goodrich RD, Garrett JE, Gast DR, Kirick MA, Larson DA, Meiske JC. Influence of monensin on the performance of cattle. J Anim Sci. 1984;58(6):1484–98.

    CAS  Google Scholar 

  75. Odongo NE, Bagg R, Vessie G, Dick P, Or-Rashid MM, Hook SE, et al. Long-term effects of feeding monensis on methane production in lactating dairy cows. J Dairy Sci. 2007;90:1781–8.

    CAS  Google Scholar 

  76. Benchaar C, Calsamiglia S, Chaves AV, Fraser GR, Colombatto D, McAllister TA, et al. A review of plant-derived essential oils in ruminant nutrition and production. Anim Feed Sci Tech. 2008;145:209–28.

    CAS  Google Scholar 

  77. Chaucheyras-Durand F, Walkermm ND, Bach A. Effects of active dry yeasts on the rumen microbial ecosystem: past, present and future. Anim Feed Sci Tech. 2008;145:5–26.

    CAS  Google Scholar 

  78. Nocek JE, Kautz WP. Direct-fed microbial supplementation on ruminal digestion, health and performace of pre- and postpartum dairy cattle. J Dairy Sci. 2006;89:260–6.

    CAS  Google Scholar 

  79. Kung L, Treacher RJ, Nauman GA, Smagala AM, Endres KM, Cohen MA. The effect of treating forages with fibrolytic enzymes on its nutritive value and lactation performance of dairy cows. J Dairy Sci. 2000;83:115–22.

    CAS  Google Scholar 

  80. Stokes MR. Effects of an enzyme mixture, an inoculant, and their interaction on silage fermentation and dairy production. J Dairy Sci. 1992;75:764–73.

    CAS  Google Scholar 

  81. Lewis GE, Sanchez WK, Hunt CW, Guy MA, Pritchard GT, Swanson BI, et al. Effect of direct-fed fibrolytic enzymes on the lactational performance of dairy cows. J Dairy Sci. 1998;82:611–7.

    Google Scholar 

  82. Zened A, Combes S, Laurent Cauquil L, Mariette J, Klopp C, Bouchez O, et al. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol Ecol. 2013;83:504–14.

    CAS  Google Scholar 

  83. Van Nevel CJ, Demeyer DI. Control of rumen methanogenesis. Environ Monit Assess. 1996;42:73–97.

    Google Scholar 

  84. Leahy SC, Kelly WJ, Altermann E, Ronimus RS, Yeoman CJ, Pacheco DM, et al. The genome sequence of the rumen methanogen methanobrevibacter ruminantium reveals new possibilities for controlling ruminant methane emissions. PLoS One. 2010;5(1):1–17.

    Google Scholar 

  85. Yang CJ, Mao SY, Long LM, Zhu WY. Effect of disodium fumarate on microbial abundance, ruminal fermentation and methane emission in goats under different forage: concentrate ratios. Animal. 2012;6(11):1788–94.

    CAS  Google Scholar 

  86. Martin SA. Manipulation of ruminal fermentation with organic acids: a review. J Anim Sci. 1998;76(12):3123–32.

    CAS  Google Scholar 

  87. Kim SW, Less JF, Wang L, Yan T, Kiron V, Kaushik SJ et al. Meeting global feed protein demand: challenge, opportunity, and strategy. In: Lewin HA, Roberts RM, editors, Vol 7. Annu Rev Anim Biosci. 2019. p. 221–43.

  88. Mussatto SI, Dragone G, Roberto IC. Brewers’ spent grain: generation, characteristics and potential applications. J Cereal Sci. 2006;43:1–14.

    CAS  Google Scholar 

  89. Wells ML, Potin P, Craigie JS, Raven JA, Merchant SS, Helliwell KE, et al. Algae as nutritional and functional food sources: revisiting our understanding. J Appl Phycol. 2017;29:949–82.

    CAS  Google Scholar 

  90. Borowitzka MA. High-value products from microalgae - their development and commercialisation. J Appl Phycol. 2013;25:743–56.

    CAS  Google Scholar 

  91. Caporgno MP, Mathys A. Trends in microalgae incorporation into innovatice food products with potential health benefits. Front Nutr. 2018;5(58):1–10.

    Google Scholar 

  92. Eppink MH, Olivieri G, Reith H, van den Berg C, Barbosa MJ, Wijffels RH. From current algae products to future biorefinery practices: a review. Biorefineries; 2017. p. 99–123.

  93. Gebreyowhans S, Lu J, Zhang S, Pang X, Lv J. Dietary enrichment of milk and dairy products with n-3 fatty acids: a review. Int Dairy J. 2019;97:158–66. https://doi.org/10.1016/j.idairyj.2019.05.011.

    Article  CAS  Google Scholar 

  94. Mata TM, Martins AA, Caetano NS. Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev. 2010;14(1):217–32.

    CAS  Google Scholar 

  95. Halmemies-Beauchet-Filleau A, Rinne M, Lamminen M, Mapato C, Ampapon T, Wanapat M, et al. Review: alternative and novel feeds for ruminants: nutritive value, product quality and environmental aspects. Animal. 2018;12:S295–309.

    CAS  Google Scholar 

  96. Leng RA. Interactions between microbial consortia in biofilms: a paradigm shift in rumen microbial ecology and enteric methane mitigation. Anim Prod Sci. 2014;54:519–43.

    CAS  Google Scholar 

  97. Božic AK, Anderson RC, Carstens GE, Ricke SC, Callaway TR, Yokoyama MT, et al. Effects of the methane-inhibitors nitrate, nitroethane, lauric acid, Lauricidin ® and the Hawaiian marine algae Chaetoceros on ruminal fermentation in vitro. Bioresour Technol. 2009;100:4017–25.

    Google Scholar 

  98. • Machado L, Magnusson M, Paul NA, Kinley R, de Nys R, Tomkins N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J Appl Phycol. 2016;28:3117–26. https://doi.org/10.1007/s10811-016-0830-7Identifed the bioactive compound responsible for methane reduction in the red algae.

  99. Machado L, Magnusson M, Paul NA, Kinley R, de Nys R, Tomkins N. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. J Appl Phycol. 2016;28:1443–52.

  100. Tomkins NW, Colegate SM, Hunter RA. A bromochloromethane formulation reduces enteric methanogenesis in cattle fed grain-based diets. Anim Prod Sci. 2009;49:1053.

    CAS  Google Scholar 

  101. Kinley RD, De Nys R, Vucko MJ, Machado L, Tomkins NW. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim Prod Sci. 2016;56(3):282–9.

    CAS  Google Scholar 

  102. Fievez V, Boeckaert C, Vlaeminck B, Mestdagh J, Demeyer D. In vitro examination of DHA-edible micro-algae: 2. Effect on rumen methane production and apparent degradability of hay. Anim Feed Scie Tech. 2007;136(1–2):80–95.

    CAS  Google Scholar 

  103. Moate PJ, Williams SRO, Hannah MC, Eckard RJ, Auldist MJ, Ribaux BE, et al. Effects of feeding algal meal high in docosahexaenoic acid on feed intake, milk production, and methane emissions in dairy cows. J Dairy Sci. 2013;96:3177–88. https://doi.org/10.3168/jds.2012-6168.

    Article  CAS  Google Scholar 

  104. Fievez V, Dohme F, Danneels M, Raes K, Demeyer D. Fish oils as potent rumen methane inhibitors and associated effects on rumen fermentation in vitro and in vivo. Anim Feed Sci Tech. 2003;104:41–58.

    CAS  Google Scholar 

  105. Klop G, Van Laar-Van Schuppen S, Pellikaan WF, Hendriks WH, Bannink A, Dijkstra J. Changes in in vitro gas and methane production from rumen fluid from dairy cows during adaptation to feed additives in vivo. Animal. 2017;11:591–9.

    CAS  Google Scholar 

  106. Soliva CR, Hindrichsen IK, Meile L, Kreuzer M, Machmüller A. Effects of mixtures of lauric and myristic acid on rumen methanogens and methanogenesis in vitro. Lett Appl Microbiol. 2003;37:35–9.

    CAS  Google Scholar 

  107. Ungerfeld EM, Rust SR, Burnett RJ, Yokoyama MT, Wang JK. Effects of two lipids on in vitro ruminal methane production. Anim Feed Sci Tech. 2005;119:179–85.

    CAS  Google Scholar 

  108. Anderson RC, Carstens GE, Miller RK, Callaway TR, Schultz CL, Edrington TS, et al. Effect of oral nitroethane and 2-nitropropanol administration on methane-producing activity and volatile fatty acid production in the ovine rumen. Bioresour Technol. 2006;97:2421–6.

    CAS  Google Scholar 

  109. Hristov AN, Oh J, Giallongo F, Frederick TW, Harper MT, Weeks HL, et al. An inhibitor persistently decreased enteric methane emission from dairy cows with no negative effect on milk production. PNAS. 2015;112(34):10663–8.

    CAS  Google Scholar 

  110. Schink B. Inhibition of methanogenesis by ethylene and other unsaturated hydrocarbons. FEMS Microbiol Lett. 1985;31:63–8.

    CAS  Google Scholar 

  111. Miller TL, Wolin MJ. Inhibition of growth of methane-producing bacteria of the ruminant forestomach by hydroxymethylglutaryl~SCoA reductase inhibitors. J Dairy Sci. 2001;84:1445–8.

    CAS  Google Scholar 

  112. Martinez-Fernandez G, Denman SE, Yang C, Cheung J, Mitsumori M, McSweeney CS. Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Front Microbiol. 2016;7:1–14.

    Google Scholar 

  113. Bauchop T. Inhibition of rumen methanogenesis by methane analogues. J Bacteriol. 1967;94(1):171–5.

    CAS  Google Scholar 

  114. Johnson ED, Wood AS, Stone JB, Moran ET. Some effects of methane inhibition in ruminants (steers). Can J Anim Sci. 1972;52(4):703–12.

    CAS  Google Scholar 

  115. Knight T, Ronimus RS, Dey D, Tootill C, Naylor G, Evans P, et al. Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim Feed Sci Tech. 2011;166–167:101–12.

    Google Scholar 

  116. Risher J, Jones D. Toxicological profile for bromoform and dibromochloromethane: U.S. Department of Health and Human Services, Agency for Toxic Substances and Disease Registry 2005.

  117. McConnell O, Fenical W. Halogen chemistry of the red alga Asparagopsis. Phytochem. 1977;16(2).

  118. Chipperfield MP, Hossaini R, Montzka SA, Reimann S, Sherry D, Tegtmeier S. Renewed and emerging concerns over the production and emission of ozone-depleting substances. Nat Rev Earth Environ. 2020. https://doi.org/10.1038/s43017-020-0048-8.

  119. Paul NA, De Nys R, Steinberg PD. Chemical defence against bacteria in the red alga Asparagopsis armata: linking structure with function. Mar Ecol Prog Ser. 2006;306:87–101.

    CAS  Google Scholar 

  120. Mathison GW, Okine EK, McAllister TA, Dong Y, Galbraith J, Dmytruk OIN. Reducing methane emissions from ruminant animals. J App Anim Res. 1998;14(1):1–28.

    CAS  Google Scholar 

  121. Patra A, Park T, Kim M, Yu Z. Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances. J Anim Sci Biotechno. 2017;8:1–18.

    Google Scholar 

  122. Grainger C, Auldist J, Clarke T, Beauchemin KA, McGinn SM, Hannah MC, et al. Use of monensin controlled-release capsules to reduce methane emissions and improve milk production of dairy cows offered pasture supplemented with crain. J Dairy Sci. 2008;91:1159–65.

    CAS  Google Scholar 

  123. Cameron AR, Malmo J. A survey of the efficacy of sustained-release monensin capsules in the control of bloat in dairy cattle. Aust Vet J. 1993;70(1):1–4.

    CAS  Google Scholar 

  124. Henderson B, Falcucci A, Mottet A, Early L, Werner B, Steinfeld H, et al. Marginal costs of abating greenhouse gases in the global ruminant livestock sector. Mitig Adapt Strat GL. 2017;22:199–224.

    Google Scholar 

  125. Martin P. Cost of production Australian beef cattle and sheep producers 2012–13 to 2014–15. ABARES Research Report, 1613, Canberra. October 2016.

  126. Riverina Australia Pty Ltd. 2019. https://www.riverina.com.au/.

  127. Sparke EJ, Bently R, Wood IMA. Fats & oils alternative energy dense feedstuffs for the cattle feedlot industry - phase 2. Final Report FLOT106, Meat and Livestock Australia Ltd. 1998.

  128. Watters CA, Edmonds CM, Rosner LS, Sloss KP, Leung PS. A cost analysis of EPA and DHA in fish, supplements, and foods. J Nutr Food Sci. 2012;2(8):1–5.

    Google Scholar 

  129. Tredici MR, Rodolfi L, Biondi N, Bassi N, Sampietro G. Techno-economic analysis of microalgal biomass production in a 1-ha Green Wall Panel (GWP®) plant. Algal Res. 2016;19:253–63.

    Google Scholar 

  130. Acien FG, Molina E, Fernandez-Sevilla JM, Barbosa M, Gouveia L, Sepulveda C et al. Economics of microalgae production. In: Gonzalez-Fernandez C, Munoz R, editors. Woodhead Publishing series in energy. Microalgae-based biofuels and bioproducts: from feedstock cultivation to end-products. Woodhead Publishing; 2017. p. 485–503.

  131. Beal CM, Gerber LN, Thongrod S, Phromkunthong W, Kiron V, Granados J, et al. Marine microalgae commercial production improves sustainability of global fisheries and aquaculture. Sci Rep. 2018;8(15064):1–7.

    CAS  Google Scholar 

  132. Thornton PK, Herrero M. Potential for reduced methane and carbon dioxide emissions from livestock and pasture management in the tropics. PNAS. 2010;107(46):19667–72.

  133. •• Madeira MS, Cardoso C, Lopes PA, Coelho D, Afonso C, Bandarra NM, et al. Microalgae as feed ingredients for livestock production and meat quality: a review. Livest Sci. 2017;205:111–21 Review of the effect of microalgal feed on meat quality in livestock.

  134. Machado L, Magnusson M, Paul NA, De Nys R, Tomkins N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One. 2014;9:e85289.

    Google Scholar 

  135. Chagas JC, Ramin M, Krizsan SJ. In vitro evaluation of different dietary methane mitigation strategies. Animals. 2019;9:1120.

    Google Scholar 

  136. Roque BM, Salwen JK, Kinley R, Kebreab E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J Clean Prod. 2019;234:132–8.

    CAS  Google Scholar 

  137. Roque BM, Brooke CG, Ladau J, Polley T, Marsh LJ, Najafi N, et al. Effect of the macroalgae Asparagopsis taxiformis on methane production and rumen microbiome assemblage. Animal Microbiome. 2019;1:1–14.

    Google Scholar 

  138. Maia MRG, Fonseca AJM, Cortez PP, Cabrita ARJ. In vitro evaluation of macroalgae as unconventional ingredients in ruminant animal feeds. Algal Res. 2019;40:101481.

    Google Scholar 

  139. Lee SJ, Shin NH, Jeong JS, Kim ET, Lee SK, Lee SS. Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Asian Austral J Anim Sci. 2018;31(1):54–62.

    CAS  Google Scholar 

  140. Li X, Norman HC, Kinley RD, Laurence M, Wilmot M, Bender H et al. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim Prod Sci. 2016.

  141. Maia MRG, Fonseca AJM, Oliveira HM, Mendonça C, Cabrita ARJ. The potential role of seaweeds in the natural manipulation of rumen fermentation and methane production. Sci Rep. 2016;6:1–10.

    Google Scholar 

  142. Dubois B, Tomkins NW, Kinley RD, Bai M, Seymour S, Paul NA, et al. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci. 2013;4:34–43.

    CAS  Google Scholar 

  143. Wang Y, Xu Z, Bach SJ, McAllister TA. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim Feed Sci Tech. 2008;145:375–95.

    CAS  Google Scholar 

  144. Tibbetts SM, Fredeen AH. Nutritional evaluation of whole and lipid-extracted biomass of the microalga Scenedesmus sp. AMDD for animal feeds: simulated ruminal fermentation and in vitro monogastric digestibility. Curr Biotechnol. 2017;6(3):264–72.

    CAS  Google Scholar 

  145. Marrez DA, Cieslak A, Gawad R, Ebeid HM, Chrenkova M, Gao M, et al. Effect of freshwater microalgae Nannochloropsis limnetica on the rumen fermentation in vitro. J Anim Feed Sci. 2017;26(4):359–64.

    Google Scholar 

  146. Kholif AE, Elghandour MMY, Salem AZM, Barbabosa A, Marquez O, Odongo NE. The effects of three total mixed rations with different concentrate to maize silage ratios and different levels of microalgae Chlorella vulgaris on in vitro total gas, methane and carbon dioxide production. J Agr Sci. 2017;155(3):494–507.

    CAS  Google Scholar 

  147. Tsiplakou E, Abdullah MAM, Skliros D, Chatzikonstantinou M, Flemetakis E, Labrou N, et al. The effect of dietary Chlorella vulgaris supplementation on micro-organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. J Anim Physiol An N. 2017;101(2):275–83.

    CAS  Google Scholar 

  148. Klop G, Hatew B, Bannink A, Dijkstra J. Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows. J Dairy Sci. 2016;99(2).

  149. Anele UY, Yang WZ, McGinn PJ, Tibbetts SM, McAllister TA. Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Can J AnimSci. 2016;96:354–63.

    CAS  Google Scholar 

  150. Tibbetts SM, MacPherson T, McGinn PJ, Fredeen AH. In vitro digestion of microalgae biomass from freshwater species isolated in Alberta, Canada for monogastric and ruminant animal feed applications. Algal Res. 2016;19:324–32.

    Google Scholar 

  151. Durmic Z, Moate PJ, Eckard R, Revell DK, WIlliams R, Vercoe PE. In vitro screening of selected feed additives, plant essential oils and plant extracts for rumen methane mitigation. J Sci Food Agric. 2014;94:1191–6.

    CAS  Google Scholar 

  152. • Fabris M, Abbriano RM, Pernice M, Sutherland DL, Commault AS, Hall CC, et al. Emerging technologies in algal biotechnology: toward the establishment of a sustainable algae-based bioeconomy. Front Plant Sci. 2020;11(279) A review of promising algal technologies, including processing and bioproducts available.

  153. Ghadiryanfar M, Rosentrater KA, Keyhani A, Omid M. A review of macroalgae production, with potential applications in biofuels and bioenergy. Renew Sust Energ Rev. 2016;54:473–81.

    CAS  Google Scholar 

  154. Aitken D, Bulboa C, Godoy-Faundez A, Turrion-Gomez JL, Antizar-Ladislao B. Life cycle assessment of macroalgae cultivation and processing for biofuel production. J Clean Prod. 2014;75:45–56.

    CAS  Google Scholar 

  155. Ertem FC, Neubauer P, Junne S. Environmental life cycle assessment of biogas production from marine macroalgal feedstock for the substitution of energy crops. J Clean Prod. 2017;140:977–85.

    CAS  Google Scholar 

  156. Laurens LML, Chen-Glasser M, McMillan JD. A perspective on renewable bioenergy from photosynthetic algae as feedstock for biofuels and bioproducts. Algal Res. 2017;24:261–4.

    Google Scholar 

  157. Beal CM, Gerber LN, Sills DL, Huntley ME, Machesky SC, Walsh MJ, et al. Algal biofuel production for fuels and feed in a 100-ha facility: a comprehensive techno-economic analysis and life cycle assessment. Algal Res. 2015;10:266–79.

    Google Scholar 

  158. Rey-Crespo F, López-Alonso M, Miranda M. The use of seaweed from the Galician coast as a mineral supplement in organic dairy cattle. Animal. 2014;8(4):580–6.

    CAS  Google Scholar 

  159. Tomkins N, Kinley R. Development of algae based functional foods for reducing enteric methane emissions from cattle. Sydney: Meat & Livestock Australia Limited 2015 Contract No.: Project code: B.CCH.6420.

  160. Monagail MM, Cornish L, Morrison L, Araújo R, Critchley AT. Sustainable harvesting of wild seaweed resources. Eur J Phycol. 2017;52(4):371–90.

    Google Scholar 

  161. Dunlop G. Feeding of seaweed meal to lactating cows. Nature. 1953;171:439–40.

    CAS  Google Scholar 

  162. Mata L, Lawton RJ, Magnusson M, Andreakis N, de Nys R, Paul NA. Within-species and temperature-related variation in the growth and natural products of the red alga Asparagopsis taxiformis. J Appl Phycol. 2017;29(3):1437–47. https://doi.org/10.1007/s10811-016-1017-y.

    Article  CAS  Google Scholar 

  163. De la Moneda A, Carro MD, Weisbjerg MR, Roleda MY, Lind V, Novoa-Garrido M, et al. Variability and potential of seaweeds as ingredients of ruminant diets: an in vitro study. Animals. 2019;9(815):1–19.

    Google Scholar 

  164. Vu HP, Nguyen LN, Zdarta J, Nga TTV, Nghiem LD. Blue-green algae in surface waters: problems and opportunities. Curr Pollut Rep. 2020. https://doi.org/10.1007/s40726-020-00140-w.

  165. Lum KK, Kim J, Lei XG. Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. J Anim Sci Biotechno. 2013;4(53):1–7.

    Google Scholar 

  166. Kholif AE, Morsy TA, Matloup OH, Anele UY. Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. J Agr Sci. 2017;155(3):508–18.

    CAS  Google Scholar 

  167. Matos J, Cardoso C, Bandarra NM, Afonso C. Microalgae as healthy ingredients for functional food: a review. Food Funct. 2017;8(8):2672–85.

    CAS  Google Scholar 

  168. Kalra EK. Nutraceutical - definition and introduction. AAPS PharmSciTech. 2003;5(3):1–2.

    Google Scholar 

  169. Aronson JK. Defining ‘nutraceuticals’: neither nutritious nor pharmaceutical. Br J Clin Pharmacol. 2017;83:8–19.

    Google Scholar 

  170. Koller M, Muhr A, Braunegg G. Microalgae as versatile celllular factories for valued products. Algal Res. 2014;6:52–63.

    Google Scholar 

  171. Matos AP. Microalgae as a potential source of proteins. In: Galanakis CM, editor. Proteins: sustainable source, processing, and applications. London: Academic Press Elsevier; 2019.

    Google Scholar 

  172. Brown MR, Jeffrey SW, Volkman JK, Dunstan GA. Nutritional properties of microalgae for mariculture. Aquaculture. 1997;151:315–31.

    CAS  Google Scholar 

  173. Plaza M, Cifuentes A, Ibáñez E. In the search of new functional food ingredients from algae. Trends Food Sci Technol. 2008;19:31–9.

    CAS  Google Scholar 

  174. Teuling E, Schrama JW, Gruppen H, Wierenga PA. Effect of cell wall characteristics on algae nutrient digestibility in Nile tilapia (Oreochromis niloticus) and African catfish (Clarus gariepinus). Aquaculture. 2017;479:490–500.

    CAS  Google Scholar 

  175. Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, et al. Ultrastructure and composition of the Nannochloropsis gaditana cell wall. Eukaryot Cell. 2014;13(11):1450–64.

    Google Scholar 

  176. Palinska KA, Krumbein WE. Perforation patterns in the peptidoglycan wall of filamentous cyanobacteria. J Phycol. 2000;36:139–45.

    Google Scholar 

  177. Mavrommatis A, Chronopoulou EG, Sotirakoglou K, Labrou NE, Zervas G, Tsiplakou E. The impact of the dietary supplementation level with Schizochytrium sp, on the oxidative capacity of both goats’ organism and milk. Livest Sci. 2018;218:37–43.

    Google Scholar 

  178. Lodge-Ivey SL, Tracey LN, Salazar A. Ruminant nutrition symposium: the utility of lipid extracted algae as a protein source in forage or starch-based ruminant diets. J Anim Sci. 2014;92(4):1331–42.

    CAS  Google Scholar 

  179. Anjos M, Fernandes BD, Vicente AA, Teixeira J, Dragone G. Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresour Technol. 2013;139:149–54.

    CAS  Google Scholar 

  180. Pittman JK, Dean AP, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol. 2011;102:17–25.

    CAS  Google Scholar 

  181. Wang B, Li Y, Wu N, Lan CQ. CO2 bio-mitigation using microalgae. Appl Microbiol Biot. 2008;79:707–18.

    CAS  Google Scholar 

  182. Solovchenko A, Khozin-Goldberg I. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol Lett. 2013;35:1745–52.

    CAS  Google Scholar 

  183. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. Biofuels from microalgae. Biotechnol Prog. 2008;24:815–20.

    CAS  Google Scholar 

  184. Skjanes K, Lindblad P, Muller J. BioCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng. 2007;24:405–13.

    CAS  Google Scholar 

  185. Skjanes K, Rebours C, Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other value products in a combined process. Crit Rev Biotechnol. 2013;33(2):172–215.

    CAS  Google Scholar 

  186. Chew KW, Yap JY, Show PL, Suan NH, Juan JC, Ling TC, et al. Microalgae biorefinery: high value products perspectives. Bioresour Technol. 2017;229:53–62.

    CAS  Google Scholar 

  187. Cai T, Park SY, Li Y. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev. 2013;19:360–9.

    CAS  Google Scholar 

  188. Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702.

    CAS  Google Scholar 

  189. Craggs R, Sutherland D, Campbell H. Hectare-scale demonstration of high rate algal ponds for enhanced wastewater treatment and biofuel production. J Appl Phycol. 2012;24:329–37.

    CAS  Google Scholar 

  190. Sutherland D, Ralph PJ. Microalgal bioremediation of emerging contaminants - opportunities and challenges. Water Res. 2019;164(114921):1–13.

    Google Scholar 

Download references

Funding

This project was funded through the Department of Industry, Innovation and Science Innovation Connections program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janice I. McCauley.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Water Pollution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCauley, J.I., Labeeuw, L., Jaramillo-Madrid, A.C. et al. Management of Enteric Methanogenesis in Ruminants by Algal-Derived Feed Additives. Curr Pollution Rep 6, 188–205 (2020). https://doi.org/10.1007/s40726-020-00151-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40726-020-00151-7

Keywords

Navigation