Skip to main content
Log in

Effect of alkaline and sonication pretreatments on the rumen degradability of date palm seeds

  • Regular Articles
  • Published:
Tropical Animal Health and Production Aims and scope Submit manuscript

Abstract

The main objective of this research was to evaluate the effects of chemical treatment and sonication (ultrasound) processing on the fiber composition and rumen degradability of date palm seeds (DPS). In the first trial, the effects of incubation or sonication in 4% sodium hydroxide (NaOH) on DPS fiber content and ruminal degradability were evaluated. Relative to untreated seeds, the ruminal degradability of DPS neutral detergent fiber (NDF) and organic matter (OM) increased (P < 0.05) for the treated seeds and were highest (P < 0.05) for the sonicated seeds. Relative to untreated seeds, the hemicellulose and lignin content were lower (P < 0.05) for the sonicated seeds, while the cellulose content was higher (P < 0.05) for the incubated seeds. In the second trial, the effects of subjecting DPS to different sonication times (5, 10, 20, and 30 min) were evaluated. The degradability of seeds’ NDF and OM were greater (P < 0.05) for the sonicated than unsonicated seeds. The highest NDF degradability was seen after 30 min sonication, whereas the OM degradability was not affected by sonication time (P > 0.05). In the third trial, the effects of subjecting DPS to sonication in different NaOH solutions (1%, 2%, 4% NaOH) were evaluated. Relative to untreated seeds, the rumen degradability of seeds’ NDF and OM increased with all NaOH concentrations but was highest (P < 0.05) with the 4% NaOH. In conclusion, our results showed that treating DPS with 4% NaOH increased the seeds’ ruminal degradability, and subjecting DPS to sonication further improved their degradability in the rumen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abid, K., Jabri, J., Beckers, Y., Yaich, H., Malek, A., Rekhis, J. Kamoun, M., 2019. Influence of adding fibrolytic enzymes on the ruminal fermentation of date palm by-products. Archives Animal Breeding, 62, 1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adesogan, A. T., Arriola, K. G., Jiang, Y., Oyebade, A., Paula, E. M., Pech-Cervantes, A. A., Romero, J.J. and Vyas, D., 2019. Symposium review: Technologies for improving fiber utilization. Journal of Dairy Science, 102(6), 5726–5755.

    Article  CAS  PubMed  Google Scholar 

  • Afiq, M. A., Rahman, R. A., Man, Y. C., Al-Kahtani, H. A. and Mansor, T. S. T., 2013. Date seed and date seed oil. International Food Research Journal, 20(5), 2035–2043.

    Google Scholar 

  • Ali, N. M., El Tinay, A. H., Elkhalifa, A. E. O., Salih, O. A. and Yousif, N. E., 2009. Effect of alkaline pretreatment and cooking on protein fractions of a high-tannin sorghum cultivar. Food Chemistry, 114(2), 646–648.

    Article  CAS  Google Scholar 

  • Aliyu, M. and Hepher, M. J., 2000. Effects of ultrasound energy on degradation of cellulose material. Ultrasonics Sonochemistry, 7(4), 265–268.

    Article  CAS  PubMed  Google Scholar 

  • AOAC, 2000. (Association of Official Analytical Chemists). Official Methods of Analysis. 17th eds., Washington, DC. USA.

  • Behera, S., Arora, R., Nandhagopal, N. and Kumar, S., 2014. Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 36, 91–106.

    Article  CAS  Google Scholar 

  • Bhaskaracharya, R. K., Kentish, S. and Ashokkumar, M., 2009. Selected applications of ultrasonics in food processing. Food Engineering Reviews, 1(1), 31.

    Article  CAS  Google Scholar 

  • Bussemaker, M. J. and Zhang, D., 2013. Effect of ultrasound on lignocellulosic biomass as a pretreatment for biorefinery and biofuel applications. Industrial and Engineering Chemistry Research, 52(10), 3563–3580.

    Article  CAS  Google Scholar 

  • Du, R., Su, R., Qi, W. and He, Z., 2018. Enhanced enzymatic hydrolysis of corncob by ultrasound-assisted soaking in aqueous ammonia pretreatment. 3 Biotech, 8(3), 166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eblaghi, M., Niakousari, M., Sarshar, M. and Mesbahi, G. R., 2016. Combining ultrasound with mild alkaline solutions as an effective pretreatment to boost the release of sugar trapped in sugarcane bagasse for bioethanol production. Journal of Food Process Engineering, 39(3), 273–282.

    Article  CAS  Google Scholar 

  • Erden, G. and Filibeli, A., 2010. Ultrasonic pre-treatment of biological sludge: consequences for disintegration, anaerobic biodegradability, and filterability. Journal of Chemical Technology and Biotechnology, 85(1), 145–150.

    Article  CAS  Google Scholar 

  • FAO. 2016. Crops. Elements: Production Quantity / Items:Dates. Accessed on 26 April 2019 from http://www.fao.org/faostat/en/#data/QC.

  • Fengel, D. and Wegener G., 1984. Wood: chemistry, ultrastructure, reactions. DeGruyter. Berlin.

    Google Scholar 

  • Filson, P. B. and Dawson-Andoh, B. E., 2009. Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Bioresource Technology, 100(7), 2259–2264.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, S. G., Grant, R. J. and Klopfenstein, T. J., 1994. Digestibility of alkali-treated wheat straw measured in vitro or in vivo using Holstein heifers. Journal of Animal Science, 72(12), 3258–3265.

    Article  CAS  PubMed  Google Scholar 

  • Haddad, S. G., Grant, R. J. and Kachman, S. D., 1998. Effect of wheat straw treated with alkali on ruminal function and lactational performance of dairy cows. Journal of Dairy Science, 81(7), 1956–1965.

    Article  CAS  PubMed  Google Scholar 

  • Hendriks, A. T. W. M. and Zeeman, G., 2009. Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10–18.

    Article  CAS  PubMed  Google Scholar 

  • Hromádková, Z., Košt’Álová, Z. and Ebringerová, A., 2008. Comparison of conventional and ultrasound-assisted extraction of phenolics-rich heteroxylans from wheat bran. Ultrasonics Sonochemistry, 15(6), 1062–1068.

    Article  PubMed  CAS  Google Scholar 

  • Jackson, M. G., 1977. The alkali treatment of straws. Animal Feed Science and Technology, 2(2), 105–130.

    Article  Google Scholar 

  • Klopfenstein, T. J., Krause, V. E., Jones, M. J. and Woods, W., 1972. Chemical treatment of low quality roughages. Journal of Animal Science, 35(2), 418–422.

    Article  Google Scholar 

  • Kumar, P., Barrett, D. M., Delwiche, M. J. and Stroeve, P., 2009. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729.

    Article  CAS  Google Scholar 

  • Li, X., Peng, Y., He, Y., Jia, F., Wang, S. and Guo, S., 2016. Applying low frequency ultrasound on different biological nitrogen activated sludge types: an analysis of particle size reduction, soluble chemical oxygen demand (SCOD) and ammonia release. International Biodeterioration and Biodegradation, 112, 42–50.

    Article  CAS  Google Scholar 

  • Liyakathali, N. A. M., Muley, P. D., Aita, G. and Boldor, D., 2016. Effect of frequency and reaction time in focused ultrasonic pretreatment of energy cane bagasse for bioethanol production. Bioresource Technology, 200, 262–271.

    Article  CAS  Google Scholar 

  • Loow, Y. L., Wu, T. Y., Jahim, J. M., Mohammad, A. W. and Teoh, W. H., 2016. Typical conversion of lignocellulosic biomass into reducing sugars using dilute acid hydrolysis and alkaline pretreatment. Cellulose, 23(3), 1491–1520.

    Article  CAS  Google Scholar 

  • Maurya, D. P., Singla, A. and Negi, S., 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol 3 Biotech, 5(5), 597–609.

    Article  PubMed  PubMed Central  Google Scholar 

  • Modenbach, A., 2013. Sodium hydroxide pretreatment of corn stover and subsequent enzymatic hydrolysis: An investigation of yields, kinetic modeling and glucose recovery. (Doctoral dissertation), University of Kentucky, Lexington.

  • Nabili, A., Fattoum, A., Passas, R. and Elaloui, E., 2016. Extraction and characterization of cellulose from date palm seeds (Phoenix dactylifera L.). Cellulose Chemistry and Technology, 50(9–10), 1015–1023.

    CAS  Google Scholar 

  • Palmonari, A., Gallo, A., Fustini, M., Canestrari, G., Masoero, F., Sniffen, C. J. and Formigoni, A., 2016. Estimation of the indigestible fiber in different forage types. Journal of Animal Science, 94(1), 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Perrone, O. M., Colombari, F. M., Rossi, J. S., Moretti, M. M. S., Bordignon, S. E., Nunes, C. D. C. C. and Da-Silva, R., 2016. Ozonolysis combined with ultrasound as a pretreatment of sugarcane bagasse: Effect on the enzymatic saccharification and the physical and chemical characteristics of the substrate. Bioresource Technology, 218, 69–76.

    Article  CAS  PubMed  Google Scholar 

  • Rad, A. R., Ahmadi, F., Mohammadabadi, T., Ziaee, E. and Polikarpov, I., 2015. Combination of sodium hydroxide and lime as a pretreatment for conversion of date palm leaves into a promising ruminant feed: an optimization approach. Waste and Biomass Valorization, 6(2), 243–252.

    Article  CAS  Google Scholar 

  • Raffrenato, E., Fievisohn, R., Cotanch, K. W., Grant, R. J., Chase, L. E. and Van Amburgh, M. E., 2017. Effect of lignin linkages with other plant cell wall components on in vitro and in vivo neutral detergent fiber digestibility and rate of digestion of grass forages. Journal of Dairy Science, 100(10), 8119–8131.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, K., Kuhar, S., Kuhad, R. and Bhat, P., 2007. Combinatorial approaches to improve plant cell wall digestion: possible solution for cattle feed problems. In: Lignocellulose biotechnology: future prospects (Eds. R.C. Kuhad, A. Singh). IK International Publishing House Pvt. Ltd, New Delhi. pp. 223–246

    Google Scholar 

  • Shirsath, S. R., Sonawane, S. H. and Gogate, P. R., 2012. Intensification of extraction of natural products using ultrasonic irradiations- A review of current status. Chemical Engineering and Processing: Process Intensification, 53, 10–23.

    Article  CAS  Google Scholar 

  • Soontornchaiboon, W., Kim, S. M. and Pawongrat, R., 2016. Effects of alkaline combined with ultrasonic pretreatment and enzymatic hydrolysis of agricultural wastes for high reducing sugar production. Sains Malaysiana, 45(6), 955–962.

    CAS  Google Scholar 

  • Subhedar, P. B. and Gogate, P. R., 2014. Alkaline and ultrasound assisted alkaline pretreatment for intensification of delignification process from sustainable raw-material. Ultrasonics Sonochemistry, 21(1), 216–225.

    Article  CAS  PubMed  Google Scholar 

  • Sun, R. and Tomkinson, J., 2002. Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrasonics Sonochemistry, 9(2), 85–93.

    Article  CAS  PubMed  Google Scholar 

  • Sun, R., Lawther, J. M. and Banks, W. B., 1995. Influence of alkaline pre-treatments on the cell wall components of wheat straw. Industrial Crops and Products, 4(2), 127–145.

    Article  CAS  Google Scholar 

  • Sundstol, F., 1988. Straw and other fibrous by-products. Livestock Production Science, 19,137–158.

    Article  Google Scholar 

  • Van Soest, P. V., Robertson, J. B. and Lewis, B. A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583–3597.

    Article  PubMed  Google Scholar 

  • Vinatoru, M., Toma, M., Radu, O., Filip, P. I., Lazurca, D. and Mason, T. J., 1997. The use of ultrasound for the extraction of bioactive principles from plant materials. Ultrasonics Sonochemistry, 4(2), 135–139.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y. and Zhang, J., 2006. A novel hybrid process, enhanced by ultrasonication, for xylan extraction from corncobs and hydrolysis of xylan to xylose by xylanase. Journal of Food Engineering, 77(1), 140–145.

    Article  CAS  Google Scholar 

  • Wang, S., Li, F., Zhang, P., Jin, S., Tao, X., Tang, X. and Wang, H., 2017. Ultrasound assisted alkaline pretreatment to enhance enzymatic saccharification of grass clipping. Energy Conversion and Management, 149, 409–415.

    Article  CAS  Google Scholar 

  • Wyman, C. E., Dale, B. E., Elander, R. T., Holtzapple, M., Ladisch, M. R. and Lee, Y. Y., 2005. Comparative sugar recovery data from laboratory scale application of leading pretreatment technologies to corn stover. Bioresource Technology, 96(18), 2026–2032.

    Article  CAS  PubMed  Google Scholar 

  • Yang, W., Ajapur, V.K., Krishnamurthy, K., Feng, H., Yang, R. and Rababah, T.M., 2009. Expedited extraction of xylan from corncob by power ultrasound. The International Journal of Agricultural and Biological Engineering, 2, 76–83.

    CAS  Google Scholar 

  • Zhang, Y. Q., Fu, E. H. and Liang, J. H., 2008. Effect of ultrasonic waves on the saccharification processes of lignocellulose. Chemical Engineering and Technology: Industrial Chemistry-Plant Equipment-Process Engineering-Biotechnology, 31(10), 1510–1515.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amer AbuGhazaleh.

Ethics declarations

Statement of animal rights

The study was approved from the Ethical Committee of the Institutional Animal Care and Use Committee-Southern Illinois University Carbondale, with the tracking number of 18-025.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aboragah, A., Embaby, M., Günal, M. et al. Effect of alkaline and sonication pretreatments on the rumen degradability of date palm seeds. Trop Anim Health Prod 52, 771–776 (2020). https://doi.org/10.1007/s11250-019-02068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11250-019-02068-w

Keywords

Navigation