Skip to main content
Log in

Dry Sliding Wear Behavior and a Proposed Criterion for Mild to Severe Wear Transition of Mg–3Al–0.4Si–0.1Zn Alloy

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Wear behavior of Mg–3Al–0.4Si–0.1Zn alloy was studied as a function of applied load and sliding speed under dry sliding conditions using a pin-on-disk configuration within 20–380 N and 0.1–4.0 m/s. An empirical wear transition map has been constructed to delineate the conditions under which severe wear initiated. The roles of microstructural evolution, hardness change in subsurface and surface oxidation on wear transition were also studied. The results indicate that the transition to severe wear occurs when the deformed microstructure in surface layer of material transforms into dynamic recrystallization (DRX) microstructure. A contact surface DRX temperature criterion for mild to severe wear transition is proposed, and the contact surface DRX temperatures are calculated using activation energy obtained by hot compression tests. A model for predicating mild to severe wear transition load has been developed based on the proposed contact surface DRX temperature criterion. The mild to severe wear transition loads are well predicted within the sliding speed range of 0.8–4.0 m/s.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Kang, S.H., Lee, Y.S., Lee, J.H.: Effect of grain refinement of magnesium alloy AZ31 by severe plastic deformation on material characteristics. J. Mater. Process. Technol. 201, 436–440 (2008)

    Article  Google Scholar 

  2. Mordike, B.L., Ebert, T.: Magnesium properties-applications-potential. Mater. Sci. Eng. A 302, 37–45 (2001)

    Article  Google Scholar 

  3. Avedesian, M.M., Baker, H.: Magnesium and Magnesium Alloys (ASM Specialty Handbook). ASM international, Geauga County (1999)

    Google Scholar 

  4. Jiang, Q.C., Wang, H.Y., Ma, B.X., Wang, J.G.: Modification of Mg2Si in Mg–Si alloys with yttrium. Mater. Sci. Eng. A 392, 130–135 (2005)

    Article  Google Scholar 

  5. Archard, J.F., Hirst, W.: The wear of metals under unlubricated conditions. Proc. R. Soc. Lond. Ser. A236, 397–410 (1956)

    Article  Google Scholar 

  6. Farokhzadeh, K., Edrisy, A.: Transition between mild and severe wear in titanium alloys. Tribol. Int. 94, 98–111 (2016)

    Article  Google Scholar 

  7. Chen, H., Alpas, A.T.: Sliding wear map for the magnesium alloy Mg–9Al–0.9Zn (AZ91). Wear 246, 106–116 (2000)

    Article  Google Scholar 

  8. Liang, C., Li, C., Lv, X.X., An, J.: Correlation between friction-induced microstructural evolution, strain hardening in subsurface and tribological properties of AZ31 magnesium alloy. Wear 312, 29–39 (2014)

    Article  Google Scholar 

  9. Su, T.F., Han, X., Wang, Y.B., Yin, M.L., Liang, C., An, J.: An investigation on subsurface microstructural evolution and mild to severe wear transition in AZ51 magnesium alloy. Tribol. Trans. 58, 549–559 (2015)

    Article  Google Scholar 

  10. El-Morsy, A.W.: Dry sliding wear behavior of hot deformed magnesium AZ61 alloy as influenced by the sliding conditions. Mater. Sci. Eng. A 473, 330–335 (2008)

    Article  Google Scholar 

  11. Taltavull, C., Torres, B., Lopez, A.J., Rams, J.: Dry sliding wear behavior of AM60B magnesium alloy. Wear 301, 15–25 (2013)

    Article  Google Scholar 

  12. Taltavull, C., Rodrigo, P., Torres, B., Lopez, A.J., Rams, J.: Dry sliding wear behavior of AM50B magnesium alloy. Mater. Des. 56, 549–556 (2014)

    Article  Google Scholar 

  13. Selvan, S.A., Ramanathan, S.: Dry sliding wear behavior of hot extruded ZE41A magnesium alloy. Mater. Sci. Eng. A 527, 1815–1820 (2010)

    Article  Google Scholar 

  14. Cicek, B., Ahlatci, H., Sun, Y.: Wear behaviours of Pb added Mg–Al–Si composites reinforced with in situ Mg2Si particles. Mater. Des. 50, 929–935 (2013)

    Article  Google Scholar 

  15. Ajith Kumar, K.K., Pillai, U.T.S., Pai, B.C., Chakraborty, M.: Dry sliding wear behaviour of Mg–Si alloys. Wear 303, 56–64 (2013)

    Article  Google Scholar 

  16. Zhu, S.M., Gibson, M.A., Dargusch, M.S., Nie, J.F.: Analysis of the creep behaviour of die-cast Mg–3Al–1Si alloy. Mater. Sci. Eng. A 578, 377–382 (2013)

    Article  Google Scholar 

  17. Kumar, H., Chaudhari, G.P.: Creep behavior of AS41 alloy matrix nano-composites. Mater. Sci. Eng. A 607, 435–444 (2014)

    Article  Google Scholar 

  18. Boby, A., Srinivasan, A., Pillai, U.U.S., Pai, B.C.: Mechanical and wear properties of Sb- and Y-added Mg–9Al–1Zn (AZ91) alloy. Metall. Mater. Trans. A 46, 4234–4246 (2015)

    Article  Google Scholar 

  19. Poddar, P., Das, A., Sahoo, K.L.: Dry sliding wear characteristics of gravity die-cast magnesium alloys. Metall. Mater. Trans. A 45, 2270–2283 (2014)

    Article  Google Scholar 

  20. Wang, S.Q., Yang, Z.R., Zhao, Y.T., Wei, M.X.: Sliding wear characteristics of AZ91D alloy at ambient temperatures of 25–200 °C. Tribol. Lett. 38, 39–45 (2010)

    Article  Google Scholar 

  21. Zhang, J., Alpas, A.T.: Transition between mild and severe wear in aluminum alloys. Acta Mater. 45, 513–518 (1997)

    Article  Google Scholar 

  22. An, J., Xuan, X.H., Zhao, J., Sun, W., Niu, X.D.: Dry sliding wear behavior and subsurface microstructure evolution of Mg97Zn1Y2 alloy in a wide sliding speed range. J. Mater. Eng. Perform. 25, 5363–5373 (2016)

    Article  Google Scholar 

  23. Yang, X., Okabe, Y., Miura, H., Sakai, T.: Effect of pass strain and temperature on recrystallisation in magnesium alloy AZ31 after interrupted cold deformation. J. Mater. Sci. 47, 2823–2830 (2012)

    Article  Google Scholar 

  24. Moore, M.A., Douthwaite, R.M.: Plastic deformation below worn surface. Metall. Trans. 7, 1833–1839 (1976)

    Article  Google Scholar 

  25. Venkataraman, B., Sundararajan, G.: The sliding behaviour of Al–SiC particulate composites ΙΙ. The characterization of subsurface deformation and correlation with wear behavior. Acta Mater. 44, 461–473 (1996)

    Article  Google Scholar 

  26. Sellars, C., Tegart, W.M.: On the mechanism of hot deformation. Acta Metall. 14, 1136–1138 (1966)

    Article  Google Scholar 

  27. Sellars, C., Tegart, W.M.: Hot workability. Int. Metall. Rev. 17, 1–24 (1972)

    Google Scholar 

  28. Lim, S.C., Ashby, M.F.: Wear-mechanism maps. Acta Mater. 35, 1–24 (1987)

    Article  Google Scholar 

  29. Somekawa, H., Meada, S., Hirayama, T., Mitsuoka, T., Inoue, T., Mukai, T.: Microstructural evolution during dry wear test in magnesium and Mg–Y alloy. Mater. Sci. Eng. A561, 371–377 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to express their gratitude for the support under the Project 985-automotive engineering of Jilin University, National Foundation of Doctoral Station (Grant No. 20110061110031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, J., Sun, W. & Niu, X.D. Dry Sliding Wear Behavior and a Proposed Criterion for Mild to Severe Wear Transition of Mg–3Al–0.4Si–0.1Zn Alloy. Tribol Lett 65, 98 (2017). https://doi.org/10.1007/s11249-017-0882-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-017-0882-0

Keywords

Navigation