Skip to main content
Log in

A Novel Method of Evaluating the Mild to Severe Wear Transition Loads for Magnesium Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper describes a novel method for predicting the mild to severe wear transition loads for AZ31 and AZ61 alloys at various sliding velocities. Morphologies and hardness of worn surfaces and microstructures in subsurfaces of AZ31 alloy were analyzed. A criterion of mild to severe wear transition is proposed, i.e., the mild to severe wear transition is controlled by a critical surface dynamic recrystallization (DRX) temperature. DRX temperatures in surface layers at transition loads are determined using recrystallization kinetics. Correlation between DRX temperature and transition load is established by introducing a constant c DRX that is associated with testing equipment and material properties of pin and disk in the critical DRX state. The transition loads are well predicted in a sliding velocity range of 0.5-4.0 m/s for AZ31 alloy, and 0.8-2.0 m/s for AZ61 alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Chen and A.T. Alpas, Sliding Wear Map for the Magnesium Alloy Mg-9Al-0.9Zn (AZ91), Wear, 2000, 246, p 106–116

    Article  Google Scholar 

  2. J.F. Archard and W. Hirst, The Wear of Metals Under Unlubricated Conditions, Proc. R. Soc. A, 1956, 236, p 397–410

    Article  Google Scholar 

  3. J. Zhang and A.T. Alpas, Transition Between Mild and Severe Wear in Aluminum Alloys, Acta Mater., 1997, 45, p 513–518

    Article  Google Scholar 

  4. J. An, R.G. Li, Y. Lu, C.M. Chen, Y. Xu, X. Chen, and L.M. Wang, Dry Sliding Wear Behavior of Magnesium Alloys, Wear, 2008, 265, p 97–104

    Article  Google Scholar 

  5. S.A. Selvan and S. Ramanthan, Dry Sliding Wear Behavior of Hot Extruded ZE41A Magnesium Alloy, Mater. Sci. Eng. A, 2010, 527, p 1815–1820

    Article  Google Scholar 

  6. A.W. El-Morsy, Dry Sliding Wear Behavior of Hot Deformed Magnesium AZ61 Alloy as Influenced by the Sliding Conditions, Mater. Sci. Eng. A, 2008, 473, p 330–335

    Article  Google Scholar 

  7. H. Somekawa, S. Meada, T. Hirayama, T. Mitsuoka, T. Inoue, and T. Mukai, Microstructural Evolution During Dry Wear Test in Magnesium and Mg-Y Alloy, Mater. Sci. Eng. A, 2013, 561, p 371–377

    Article  Google Scholar 

  8. A. Kumar Mondal, B.S.S. Chandra Rao, and S. Kumar, Wear Behaviour of AE42+ 20% Saffil Mg-MMC, Tribol. Int., 2007, 40, p 290–296

    Article  Google Scholar 

  9. Q.B. Nguyen, Y.H.M. Sim, M. Gupta, and C.Y.H. Lim, Tribological Characteristics of Magnesium Alloy AZ31B and its Composites, Tribol. Int., 2014, doi:10.1016/triboint2014.02.024

    Google Scholar 

  10. H.S. Arora, H. Singh, and B.K. Dhindaw, Wear Behaviour of a Mg Alloy Subjected to Friction Stir Processing, Wear, 2013, 303, p 65–77

    Article  Google Scholar 

  11. B.L. Mordike and T. Ebert, Magnesium Properties—Application Potential, Mater. Sci. Eng. A, 2001, 302, p 37–45

    Article  Google Scholar 

  12. S.A. Selvan and S. Ramanthan, Dry Sliding Wear Behavior of As-Cast ZE41A Magnesium Alloy, Mater. Des., 2010, 31, p 1930–1936

    Article  Google Scholar 

  13. A. Fabre and J.E. Masse, Friction Behavior of Laser Cladding Magnesium Alloy Against AISI, 52100 Steel, Tribol. Int., 2012, 46, p 247–253

    Article  Google Scholar 

  14. P. Poddar, A. Das, and K.L. Sahoo, Dry sliding Wear Characteristics of Gravity Die-Cast Magnesium Alloys, Metall. Mater. Trans. A, 2014, 45, p 2270–2283

    Article  Google Scholar 

  15. B. Yao, Z. Han, and K. Lu, Correlation Between Wear Resistance and Subsurface Recrystallization Structure in Copper, Wear, 2012, 294-295, p 438–445

    Article  Google Scholar 

  16. C. Taltavull, B. Torres, A.J. Lopez, and J. Rams, Dry Sliding Wear Behavior of AM60B Magnesium Alloy, Wear, 2013, 301, p 615–625

    Article  Google Scholar 

  17. M. Marya, L.G. Hector, R. Verma, and W. Tong, Microstructure Effects of AZ31 Magnesium Alloy on its Tensile Deformation and Failure Behaviors, Mater. Sci. Eng. A, 2006, 418, p 341–356

    Article  Google Scholar 

  18. N. Tang, M.P. Wang, H.F. Lou, Y.Y. Zhao, and Z. Li, Microstructure and Texture of Twin-Roll Cast Mg-3Al-1Zn-0.2Mn Magnesium Alloy, Mater. Chem. Phys., 2009, 116, p 11–15

    Article  Google Scholar 

  19. S.C. Lim and M.F. Ashby, Wear-Mechanism Maps, Acta Metall., 1987, 35, p 1–24

    Article  Google Scholar 

  20. C. Liang, C. Li, J. An, M. Yu, Y.C. Hu, W.H. Lin, F. Liu, and Y.H. Ding, Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg-3Al-1Zn Alloy, J. Mater. Eng. Perform., 2013, 22, p 3783–3791

    Article  Google Scholar 

  21. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Pergamon, Oxford, 2005

    Google Scholar 

  22. X. Yang, Y. Okabe, H. Miura, and T. Sakai, Effect of Pass Strain and Temperature on Recrystallisation in Magnesium Alloy AZ31 After Interrupted Cold Deformation, J. Mater. Sci., 2012, 47, p 2823–2830

    Article  Google Scholar 

  23. C.H. Park, C.S. Oh, and S. Kim, Dynamic Recrystallization of the H- and O-Tempered AZ31 Sheets at Elevated Temperatures, Mater. Sci. Eng. A, 2012, 542, p 127–139

    Article  Google Scholar 

  24. J.C. Tan and M.J. Tan, Dynamic Continuous Recrystallization Characteristics in Two Stage Deformation of Mg-3Al-1Zn Alloy, Mater. Sci. Eng. A, 2003, 339, p 124–132

    Article  Google Scholar 

  25. A. Mwembela, E.B. Konopleva, and H.J. McQueen, Microstructural Development in Mg Alloy AZ31 During Hot Working, Scr. Mater., 1997, 37, p 1789–1795

    Article  Google Scholar 

  26. S. Das, A.T. Morale, and A.T. Alpas, Microstructural Evolution During High Temperature Sliding Wear of Mg-3%Al-1%Zn (AZ31) Alloy, Wear, 2010, 268, p 94–103

    Article  Google Scholar 

  27. M.A. Moore and R.M. Douthwaite, Plastic Deformation Below Worn Surface, Metall. Trans., 1976, 7, p 1833–1839

    Article  Google Scholar 

  28. B. Venkataraman and G. Sundararajan, The Sliding Behaviour of Al-SiC Particulate Composites II. The Characterization of Subsurface Deformation and Correlation with Wear Behaviour, Acta Mater., 1996, 44, p 461–473

    Article  Google Scholar 

  29. H.Y. Wu, J.C. Yang, F.J. Zhu, and H.C. Liu, Hot Deformation Characteristics of As-Cast and Homogenized AZ61 Mg Alloys Under Compression, Mater. Sci. Eng. A, 2013, 550, p 273–278

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to express their gratitude for the support under the Project 985-automotive engineering of Jilin University and National Foundation of Doctoral Station (Grant No. 20110061110031).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to X. X. Lv or J. An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Wang, Y.B., Yin, M.L. et al. A Novel Method of Evaluating the Mild to Severe Wear Transition Loads for Magnesium Alloys. J. of Materi Eng and Perform 24, 1406–1416 (2015). https://doi.org/10.1007/s11665-014-1372-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-014-1372-2

Keywords

Navigation