Skip to main content
Log in

Potassium persulfate as an effective oxidizer for chemical mechanical polishing of GCr15 bearing steel

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Potassium persulfate was used as an effective oxidizer for chemical mechanical polishing (CMP) of GCr15 steel. The effects of pH, potassium persulfate content and chelating agents on the CMP performance of GCr15 steel were investigated, and the surface films formed in the potassium persulfate-based slurries were characterized accordingly. It is revealed experimentally that, with pH increasing from 2.0 to 9.0, the material removal rate (MRR) is independent of pH while the surface roughness Ra decreases. At pH 8.0, as the potassium persulfate content increases, the MRR linearly increases with a slope of 48 nm min−1 mM−1, but the surface quality continues to deteriorate accompanied with the black Fe3O4 residue due to the severe corrosion by persulfate. In particular, Fe2+ and Fe3+ ions are continuously produced by oxidation of persulfate, and a significant part of Fe2+ and Fe3+ further reacts with OH to form a non-uniform and rough surface film which primarily consists of Fe3O4. After adding an appropriate chelating agent EDTA, the Ra reaches 1.7 nm without any black residue due to the chelation reactions between iron ions and EDTA. The findings suggest that a nano-precision surface finish of bearing steel could be achieved at weakly alkaline pH with persulfate-based slurries.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Yin F, Hua L, Mao H, Han X (2013) Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments. Mater Des 43:393–401. https://doi.org/10.1016/j.matdes.2012.07.009

    Article  CAS  Google Scholar 

  2. Sihag N, Kala P, Pandey PM (2015) Chemo Assisted Magnetic Abrasive Finishing: Experimental Investigations. Procedia CIRP 26:539–543. https://doi.org/10.1016/j.procir.2014.07.067

    Article  Google Scholar 

  3. Komata H, Iwanaga Y, Ueda T, Ueda K, Mitamura N (2015) In: Beswick J (ed) Enhanced performance of rolling bearings by improving the resistance of rolling elements to surface degradation. ASTM International, West Conshohocken, PA, pp 272–290. https://doi.org/10.1520/STP158020140085

  4. Chi X, Suo XH (2011) Study on float polishing of metal nanometer surface. Adv Mater Res 154–155:1757–1760. https://doi.org/10.4028/www.scientific.net/AMR.154-155.1757

    Article  CAS  Google Scholar 

  5. Li Y (2007) Microelectronic applications of chemical mechanical planarization. John Wiley & Sons Inc, Hoboken

    Book  Google Scholar 

  6. Zhao D, Lu X (2013) Chemical mechanical polishing: theory and experiment. Friction 1(4):306–326. https://doi.org/10.1007/s40544-013-0035-x

    Article  Google Scholar 

  7. Peng D-X (2014) Chemical mechanical polishing of steel substrate using aluminum nanoparticles abrasive slurry. Ind Lubr Tribol 66(1):124–130. https://doi.org/10.1108/ILT-10-2011-0078

    Article  Google Scholar 

  8. Peng D-X (2014) Optimization of chemical mechanical polishing parameters on surface roughness of steel substrate with aluminum nanoparticles via Taguchi approach. Ind Lubr Tribol 66(6):685–690. https://doi.org/10.1108/ILT-07-2012-0063

    Article  Google Scholar 

  9. Jiang L, He Y, Luo J (2015) Chemical mechanical polishing of steel substrate using colloidal silica-based slurries. Appl Surf Sci 330:487–495. https://doi.org/10.1016/j.apsusc.2015.01.016

    Article  CAS  Google Scholar 

  10. Kao MJ, Hsu FC, Peng DX (2014) Synthesis and characterization of SiO2 nanoparticles and their efficacy in chemical mechanical polishing steel substrate. Adv Mater Sci Eng 2014:1–8. https://doi.org/10.1155/2014/691967

    Article  CAS  Google Scholar 

  11. House DA (1962) Kinetics and mechanism of oxidations by peroxydisulfate. Chem Rev 62(3):185–203. https://doi.org/10.1021/cr60217a001

    Article  CAS  Google Scholar 

  12. Kanki T, Shirasu T, Takesako S, Sakamoto M, Asneil AA, Idani N, Kimura T, Nakamura T, Miyajima M (2008) On the elements of high throughput Cu-CMP slurries compatible with low step heights. In: 2008 international interconnect technology conference, 1–4 June 2008. pp 79–81. https://doi.org/10.1109/IITC.2008.4546931

  13. Wei Z, Xinchun L, Yuhong L, Guoshun P, Jianbin L (2009) Effect of pH on material removal rate of Cu in abrasive-free polishing. J Electrochem Soc 156(3):H176–H180. https://doi.org/10.1149/1.3055985

    Article  CAS  Google Scholar 

  14. Kanki T, Kimura T, Nakamura T (2013) Chemical and mechanical properties of Cu surface reaction layers in Cu-CMP to improve planarization. ECS J Solid State Sci Technol 2(9):P375–P379. https://doi.org/10.1149/2.023309jss

    Article  CAS  Google Scholar 

  15. Ranaweera CK, Baradanahalli NK, Popuri R, Seo J, Babu SV (2019) Ammonium persulfate and potassium oleate containing silica dispersions for chemical mechanical polishing for cobalt interconnect applications. ECS J Solid State Sci Technol 8(5):P3001–P3008. https://doi.org/10.1149/2.0021905jss

    Article  CAS  Google Scholar 

  16. Tamilmani S, Huang W, Raghavan S, Small R (2002) Potential-pH diagrams of interest to chemical mechanical planarization of copper. J Electrochem Soc 149(12):G638–G642. https://doi.org/10.1149/1.1516224

    Article  CAS  Google Scholar 

  17. Beverskog B, Puigdomenech I (1996) Revised pourbaix diagrams for iron at 25–300 °C. Corros Sci 38(12):2121–2135. https://doi.org/10.1016/S0010-938X(96)00067-4

    Article  CAS  Google Scholar 

  18. Liu X, Liu Y, Liang Y, Liu H, Zhao Z, Gao B (2011) Effect of slurry components on chemical mechanical polishing of copper at low down pressure and a chemical kinetics model. Thin Solid Films 520(1):400–403. https://doi.org/10.1016/j.tsf.2011.06.050

    Article  CAS  Google Scholar 

  19. Mufti N, Atma T, Fuad A, Sutadji E (2014) Synthesis and characterization of black, red and yellow nanoparticles pigments from the iron sand. AIP Conf Proc 1617(1):165–169. https://doi.org/10.1063/1.4897129

    Article  CAS  Google Scholar 

  20. Blesa MA, Borghi EB, Maroto AJG, Regazzoni AE (1984) Adsorption of EDTA and iron—EDTA complexes on magnetite and the mechanism of dissolution of magnetite by EDTA. J Colloid Interface Sci 98(2):295–305. https://doi.org/10.1016/0021-9797(84)90155-3

    Article  CAS  Google Scholar 

  21. Gorantla VRK, Goia D, Matijević E, Babu SV (2005) Role of amine and carboxyl functional groups of complexing agents in slurries for chemical mechanical polishing of copper. J Electrochem Soc 152(12):G912–G916. https://doi.org/10.1149/1.2083287

    Article  CAS  Google Scholar 

  22. Kim YJ, Kwon OJ, Kang MC, Kim JJ (2011) Effects of the functional groups of complexing agents and Cu oxide formation on Cu dissolution behaviors in Cu CMP process. J Electrochem Soc 158(2):H190–H196. https://doi.org/10.1149/1.3522811

    Article  CAS  Google Scholar 

  23. Martell AE, Motekaitis RJ, Chen D, Hancock RD, McManus D (1996) Selection of new Fe(III)/Fe(II) chelating agents as catalysts for the oxidation of hydrogen sulfide to sulfur by air. Can J Chem 74(10):1872–1879. https://doi.org/10.1139/v96-210

    Article  CAS  Google Scholar 

  24. Wu H, Jiang L, Liu J, Deng C, Huang H, Qian L (2020) Efficient chemical mechanical polishing of AISI 52100 bearing steel with TiSol-NH4 dispersion-based slurries. Tribol Lett 68(1):34. https://doi.org/10.1007/s11249-020-1274-4

    Article  CAS  Google Scholar 

  25. Wu W, Hao WK, Liu ZY, Li XG, Du CW, Liao WJ (2015) Corrosion behavior of E690 high-strength steel in alternating wet-dry marine environment with different pH values. J Mater Eng Perform 24(12):4636–4646. https://doi.org/10.1007/s11665-015-1781-x

    Article  CAS  Google Scholar 

  26. Hussain I, Zhang Y, Huang S, Du X (2012) Degradation of p-chloroaniline by persulfate activated with zero-valent iron. Chem Eng J 203:269–276. https://doi.org/10.1016/j.cej.2012.06.120

    Article  CAS  Google Scholar 

  27. Bremner DH, Burgess AE, Houllemare D, Namkung K-C (2006) Phenol degradation using hydroxyl radicals generated from zero-valent iron and hydrogen peroxide. Appl Catal B 63(1):15–19. https://doi.org/10.1016/j.apcatb.2005.09.005

    Article  CAS  Google Scholar 

  28. Beyaz S, Kockar H, Tanrisever T (2009) Simple synthesis of superparamagnetic magnetite nanoparticles and ion effect on magnetic fluids. J Optoelectron Adv Mater Symp 1(3):447–450

    Google Scholar 

  29. Li H, Wan J, Ma Y, Huang M, Wang Y, Chen Y (2014) New insights into the role of zero-valent iron surface oxidation layers in persulfate oxidation of dibutyl phthalate solutions. Chem Eng J 250:137–147. https://doi.org/10.1016/j.cej.2014.03.092

    Article  CAS  Google Scholar 

  30. Christian GD, Dasgupta PK, Schug KA (2013) Analytical chemistry, 7th edn. Wiley, Hoboken

    Google Scholar 

  31. Kissi M, Bouklah M, Hammouti B, Benkaddour M (2006) Establishment of equivalent circuits from electrochemical impedance spectroscopy study of corrosion inhibition of steel by pyrazine in sulphuric acidic solution. Appl Surf Sci 252(12):4190–4197. https://doi.org/10.1016/j.apsusc.2005.06.035

    Article  CAS  Google Scholar 

  32. Song Y, Shan D, Chen R, Han E-H (2009) Investigation of surface oxide film on magnesium lithium alloy. J Alloys Compd 484(1):585–590. https://doi.org/10.1016/j.jallcom.2009.04.137

    Article  CAS  Google Scholar 

  33. Song Y, Shan D, Chen R, Zhang F, Han E-H (2009) Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mater Sci Eng C 29(3):1039–1045. https://doi.org/10.1016/j.msec.2008.08.026

    Article  CAS  Google Scholar 

  34. Fernández Macía L, Petrova M, Hubin A (2015) ORP-EIS to study the time evolution of the [Fe(CN)6]3-/[Fe(CN)6]4- reaction due to adsorption at the electrochemical interface. J Electroanal Chem 737:46–53. https://doi.org/10.1016/j.jelechem.2014.10.032

    Article  CAS  Google Scholar 

  35. Liu C, Bi Q, Leyland A, Matthews A (2003) An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour. Corros Sci 45(6):1257–1273. https://doi.org/10.1016/S0010-938X(02)00214-7

    Article  CAS  Google Scholar 

  36. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254(8):2441–2449. https://doi.org/10.1016/j.apsusc.2007.09.063

    Article  CAS  Google Scholar 

  37. Zhu H, Cao F, Zuo D, Zhu L, Jin D, Yao K (2008) A new hydrothermal blackening technology for Fe3O4 coatings of carbon steel. Appl Surf Sci 254(18):5905–5909. https://doi.org/10.1016/j.apsusc.2008.03.184

    Article  CAS  Google Scholar 

  38. Hawn DD, DeKoven BM (1987) Deconvolution as a correction for photoelectron inelastic energy losses in the core level XPS spectra of iron oxides. Surf Interface Anal 10(2–3):63–74. https://doi.org/10.1002/sia.740100203

    Article  CAS  Google Scholar 

  39. Stoch J, Gablankowska-Kukucz J (1991) The effect of carbonate contaminations on the XPS O 1s band structure in metal oxides. Surf Interface Anal 17(3):165–167. https://doi.org/10.1002/sia.740170308

    Article  CAS  Google Scholar 

  40. Horváth D, Toth L, Guczi L (2000) Gold nanoparticles: effect of treatment on structure and catalytic activity of Au/Fe2O3 catalyst prepared by co-precipitation. Catal Lett 67(2):117–128. https://doi.org/10.1023/A:1019073723384

    Article  Google Scholar 

  41. Cheng F-Y, Su C-H, Yang Y-S, Yeh C-S, Tsai C-Y, Wu C-L, Wu M-T, Shieh D-B (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26(7):729–738. https://doi.org/10.1016/j.biomaterials.2004.03.016

    Article  CAS  PubMed  Google Scholar 

  42. Lin T-C, Seshadri G, Kelber JA (1997) A consistent method for quantitative XPS peak analysis of thin oxide films on clean polycrystalline iron surfaces. Appl Surf Sci 119(1):83–92. https://doi.org/10.1016/S0169-4332(97)00167-0

    Article  CAS  Google Scholar 

  43. Allen GC, Curtis MT, Hooper AJ, Tucker PM (1974) X-Ray photoelectron spectroscopy of iron–oxygen systems. J Chem Soc Dalton Trans 14:1525–1530. https://doi.org/10.1039/DT9740001525

    Article  Google Scholar 

  44. Qin Z, Luo Q, Zhang Q, Wu Z, Liu L, Shen B, Hu W (2018) Improving corrosion resistance of nickel-aluminum bronzes by surface modification with chromium ion implantation. Surf Coat Technol 334:402–409. https://doi.org/10.1016/j.surfcoat.2017.11.066

    Article  CAS  Google Scholar 

  45. López GP, Castner DG, Ratner BD (1991) XPS O 1s binding energies for polymers containing hydroxyl, ether, ketone and ester groups. Surf Interface Anal 17(5):267–272. https://doi.org/10.1002/sia.740170508

    Article  Google Scholar 

  46. Kaplun M, Sandström M, Boström D, Shchukarev A, Persson P (2005) Crystal structures and spectroscopic properties of palladium complexes isolated from Pd–EDTA solutions. Inorg Chim Acta 358(3):527–534. https://doi.org/10.1016/j.ica.2004.09.027

    Article  CAS  Google Scholar 

  47. Atzei D, De Filippo D, Rossi A, Caminiti R (1993) X-ray photoelectron spectra of dinitrogen chelating ligands with some transition metals. Spectrochim Acta Part A 49(12):1779–1785. https://doi.org/10.1016/0584-8539(93)80246-7

    Article  Google Scholar 

  48. Ihnfeldt R, Talbot JB (2008) Effect of CMP slurry chemistry on copper nanohardness. J Electrochem Soc 155(6):H412–H420. https://doi.org/10.1149/1.2903293

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support by the National Natural Science Foundation of China (51975488, 51991373 and 51605396), National Key R&D Program of China (2020YFA0711001 and 2018YFB2000400), Science Challenge Project (TZ2018006), and Laboratory of Precision Manufacturing Technology CAEP (ZD17005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Jiang, L., Liu, J. et al. Potassium persulfate as an effective oxidizer for chemical mechanical polishing of GCr15 bearing steel. J Appl Electrochem 51, 803–814 (2021). https://doi.org/10.1007/s10800-021-01540-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-021-01540-6

Keywords

Navigation