Skip to main content
Log in

Nanoscale Friction Behavior of the Ni-Film/Substrate System Under Scratching Using MD Simulation

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The friction behavior of the nanoscratching process is investigated using molecular dynamic simulations by considering a sphere indenter sliding against a nickel nanofilm structure. In the film/substrate system, the interface-dominated friction process is studied during the nanoscratch process. The results indicate that the interface accommodates deformation during the scratch by absorbing plastic deformation (such as stacking faults and partial dislocations) and by allowing locally interface slip. The observed local material shuffling beneath the tip that was strongly affected by the interface and friction mechanisms, including material ploughing along the track, filling in of the track, and piling up of the chip in front of the tip, are discussed. The combination effects of both scratching depths and film thicknesses were also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer Verlag, Berlin (2000)

    Google Scholar 

  2. Bhushan, B.: Handbook of Micro/Nanotribology. CRC Press, Boca Raton (1999)

    Google Scholar 

  3. Greenwood, J.A., Wu, J.J.: Surface roughness and contact: an apology. Meccanica 36, 617–630 (2001)

    Article  Google Scholar 

  4. Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter 17, R1 (2005)

    Article  CAS  Google Scholar 

  5. Tomassone, M.S., Sokoloff, J.B., Widom, A., Krim, J.: Dominance of phonon friction for a xenon film on a silver (111) surface. Phys. Rev. Lett. 79, 4798–4801 (1997)

    Article  CAS  Google Scholar 

  6. Baumgartl, J., Dietrich, J., Dobnikar, J., Bechinger, C., Von Gruenberg, H.H.: Phonon dispersion curves of two-dimensional colloidal crystals: the wavelength-dependence of friction. Soft Matter 4, 2199–2206 (2008)

    Article  CAS  Google Scholar 

  7. Juaristi, J.I., Alducin, M., Muino, R.D., Busnengo, H.F., Salin, A.: Role of electron-hole pair excitations in the dissociative adsorption of diatomic molecules on metal surfaces. Phys. Rev. Lett. 100, 116102 (2008)

    Article  CAS  Google Scholar 

  8. Komanduri, R., Chandrasekaran, N., Raff, L.M.: Molecular dynamics simulation of atomic-scale friction. Phys. Rev. B. 61, 14007 (2000)

    Article  CAS  Google Scholar 

  9. Fang, T.H., Liu, C.H., Shen, S.T., Prior, S.D., Ji, L.W., Wu, J.H.: Nanoscratch behavior of multi-layered films using molecular dynamics. Appl. Phys. A. Mater. Sci. Process. 90, 753–758 (2008)

    Article  CAS  Google Scholar 

  10. Cho, M.H., Kim, S.J., Lim, D.S., Jang, H.: Atomic scale stick-slip caused by dislocation nucleation and propagation during scratching of a Cu substrate with a nanoindenter: a molecular dynamics simulation. Wear 259, 1392–1399 (2005)

    Article  CAS  Google Scholar 

  11. Hardy, W.B., Doubleday, I.: Boundary lubrication. The paraffin series. Proc. R. Soc. Lond. Ser. A. 100, 550 (1922)

    Article  CAS  Google Scholar 

  12. Madou, M.J.: Fundamentals of Microfabrication: The Science of Miniaturization. CRC Press, Boca Raton (2002)

    Google Scholar 

  13. Misra, A., Hirth, J.P., Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53, 4817–4824 (2005)

    Article  CAS  Google Scholar 

  14. Dayal, P., Savvides, N., Hoffman, M.: Characterisation of nanolayered aluminium/palladium thin films using nanoindentation. Thin Solid Films 517, 3698–3703 (2009)

    Article  CAS  Google Scholar 

  15. Medyanik, S.N., Shao, S.: Strengthening effects of coherent interfaces in nanoscale metallic bilayers. Comput. Mater. Sci. 45, 1129–1133 (2009)

    Article  CAS  Google Scholar 

  16. Kang, B.C., Kim, H.Y., Kwon, O.Y., Hong, S.H.: Bilayer thickness effects on nanoindentation behavior of Ag/Ni multilayers. Scripta Mater. 57, 703–706 (2007)

    Article  CAS  Google Scholar 

  17. Saraev, D., Miller, R.E.: Atomistic simulation of nanoindentation into copper multilayers. Model. Simul. Mater. Sci. Eng. 13, 1089 (2005)

    Article  CAS  Google Scholar 

  18. Cheng, D., Yan, Z.J., Yan, L.: Misfit dislocation network in Cu/Ni multilayers and its behaviors during scratching. Thin Solid Films 515, 3698–3703 (2007)

    Article  CAS  Google Scholar 

  19. Foiles, S.M., Baskes, M.I., Daw, M.S.: Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys. Rev. B. 33, 7983 (1986)

    Article  CAS  Google Scholar 

  20. Kelchner, C.L., Plimpton, S.J., Hamilton, J.C.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B. 58, 11085 (1998)

    Article  CAS  Google Scholar 

  21. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  22. Fang, T.H., Chang, W.Y., Huang, J.J.: Dynamic characteristics of nanoindentation using atomistic simulation. Acta Mater. 57, 3341–3348 (2009)

    Article  CAS  Google Scholar 

  23. Komanduri, R., Chandrasekaran, N., Raff, L.M.: MD simulation of indentation and scratching of single crystal aluminum. Wear 240, 113–143 (2000)

    Article  CAS  Google Scholar 

  24. Nosé, S.: A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511 (1984)

    Article  Google Scholar 

  25. Choi, Y., Van Vliet, K.J., Li, J., Suresh, S.: Size effects on the onset of plastic deformation during nanoindentation of thin films and patterned lines. J. Appl. Phys. 94, 6050 (2003)

    Article  CAS  Google Scholar 

  26. Kluge, M.D., Wolf, D., Lutsko, J.F., Phillpot, S.R.: Formalism for the calculation of local elastic constants at grain boundaries by means of atomistic simulation. J. Appl. Phys. 67, 2370–2379 (1990)

    Article  CAS  Google Scholar 

  27. Lilleodden, E.T., Zimmerman, J.A., Foiles, S.M., Nix, W.D.: Atomistic simulations of elastic deformation and dislocation nucleation during nanoindentation. J. Mech. Phys. Solids 51, 901–920 (2003)

    Article  CAS  Google Scholar 

  28. Gosvami, N.N., Filleter, T., Egberts, P., Bennewitz, R.: Microscopic friction studies on metal surfaces. Tribol. Lett. 39, 19–24 (2010)

    Article  CAS  Google Scholar 

  29. Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  CAS  Google Scholar 

  30. Qi, J., Chan, C.Y., Bello, I., Lee, C.S., Lee, S.T., Luo, J.B., et al.: Film thickness effects on mechanical and tribological properties of nitrogenated diamond-like carbon films. Surf. Coat. Technol. 145, 38–43 (2001)

    Article  CAS  Google Scholar 

  31. Mulliah, D., Kenny, S.D., Smith, R.: Modeling of stick-slip phenomena using molecular dynamics. Phys. Rev. B. 69, 205407 (2004)

    Article  Google Scholar 

  32. Mulliah, D., Kenny, S.D., Smith, R., Sanz-Navarro, C.F.: Molecular dynamic simulations of nanoscratching of silver (100). Nanotechnology 15, 243 (2004)

    Article  CAS  Google Scholar 

  33. Gao, Y., Lu, C., Huynh, N.N., Michal, G., Zhu, H.T., Tieu, A.K.: Molecular dynamics simulation of effect of indenter shape on nanoscratch of Ni. Wear 267, 1998–2002 (2009)

    Article  CAS  Google Scholar 

  34. Islam, S., Ibrahim, R.N.: Mechanism of abrasive wear in nanomachining. Tribol. Lett. 42, 275–284 (2011)

    Article  CAS  Google Scholar 

  35. Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

    Article  CAS  Google Scholar 

  36. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  CAS  Google Scholar 

  37. Wilson, G.M., Sullivan, J.L.: An investigation into the effect of film thickness on nanowear with amorphous carbon-based coatings. Wear 266, 1039–1043 (2009)

    Article  CAS  Google Scholar 

  38. Müser, M.H.: Velocity dependence of kinetic friction in the Prandtl-Tomlinson model. Phys. Rev. B. 84, 125419 (2011)

    Article  Google Scholar 

  39. Zhu, P., Hu, Y., Ma, T., Wang, H.: Study of AFM-based nanometric cutting process using molecular dynamics. Appl. Surf. Sci. 256, 7160–7165 (2010)

    Article  CAS  Google Scholar 

  40. Zhu, P., Hu, Y., Ma, T., Wang, H.: Molecular dynamics study on friction due to ploughing and adhesion in nanometric scratching process. Tribol. Lett. 41, 41–46 (2011)

    Article  Google Scholar 

  41. Sørensen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B. 53, 2101 (1996)

    Article  Google Scholar 

  42. Chang, W.Y., Fang, T.H., Lin, S.J., Huang, J.J.: Nanoindentation response of nickel surface using molecular dynamics simulation. Mol. Simul. 36, 815–822 (2010)

    Article  CAS  Google Scholar 

  43. Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87, 116101 (2001)

    Article  CAS  Google Scholar 

  44. Campaná, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. Europhys. Lett. 77, 38005 (2007)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grants Nos. 10772096, 11021262, 10932011 and 91116003), and by the National Basic Research Program of China through 2012CB937500. The authors gratefully acknowledge useful discussions with Prof. F. P. Yuan from LNM at the Institute of Mechanics, Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. M. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, X.M., Liu, Z.L. & Wei, Y.G. Nanoscale Friction Behavior of the Ni-Film/Substrate System Under Scratching Using MD Simulation. Tribol Lett 46, 167–178 (2012). https://doi.org/10.1007/s11249-012-9932-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9932-9

Keywords

Navigation