Skip to main content
Log in

Microscopic Friction Studies on Metal Surfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Atomically flat and clean metal surfaces exhibit a regime of ultra-low friction at low normal loads. Atomic force microscopy, performed in ultra-high vacuum on Cu(100) and Au(111) surfaces, reveals a clear stick-slip modulation in the lateral force but almost zero dissipation. Significant friction is observed only for higher loads (∼4–6 nN above the pull-off force) together with the onset of wear. We discuss the minor role of thermal activation in the low friction regime and suggest that a compliant metallic neck between tip and surface is formed which brings upon the low, load-independent shear stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jones, M.H., Scott, D.: Industrial Tribology: The Practical Aspects of Friction Lubrication and Wear. Elsevier, the Netherlands (1983)

    Google Scholar 

  2. Persson, B.N.J.: Sliding Friction, 2nd Ed. NanoScience and Technology. Springer, Berlin (2000)

    Google Scholar 

  3. Meyer, E., Overney, R.M., Dransfeld, K., Gyalog, T.: Nanoscience: Friction and Rheology on the Nanometer Scale. World Scientific, Singapore (1998)

    Google Scholar 

  4. Williams, J.A., Le, H.R.: Tribology and MEMS. J. Phys. D: Appl. Phys. 39(12), R201–R214 (2006)

    Article  CAS  ADS  Google Scholar 

  5. Bhushan, B.: Tribology issues and opportunities in MEMS. In: Proceedings of the NSF/AFOSR/ASME Workshop on Tribology Issues and Opportunities in MEMS, Columbus, OH, USA, 9–11 November 1997

  6. Maboudian, R., Carraro, C.C.: Surface chemistry and tribology of MEMS. Ann. Phys. Chem. 55, 35–54 (2004)

    Article  CAS  ADS  Google Scholar 

  7. Madou, M.J.: Fundamentals of Microfabrication: The Science of Miniturization Second Edition. CRC Press, FL (2002)

    Google Scholar 

  8. Rabinowicz E.: Friction and Wear of Materials. Wiley, New York (1995)

    Google Scholar 

  9. Landman, U., Luedtke, W.D., Ringer, E.M.: In: Singer, I.L., Pollock, H.M., (eds.) Fundamentals of Friction, p. 463. Kluwer Academic Press, Dordrecht (1992)

    Google Scholar 

  10. Belak, J., Stowers, I.F.: In: Singer, I.L., Pollock, H.M., (eds.) Fundamentals of Friction. p. 511. Kluwer Academic Press, Dordrecht (1992)

    Google Scholar 

  11. Nieminen, J.A., Sutton, A.P., Pethica, J.B.: Static junction growth during frictional sliding of metals. Acta Met. 40(10), 2503–2509 (1992)

    Article  CAS  Google Scholar 

  12. Buldum, A., Ciraci, S., Batra, I.P.: Contact, nanoindentation, and sliding friction. Phys. Rev. B 57(4), 2468–2476 (1998)

    Article  CAS  ADS  Google Scholar 

  13. Sørensen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B 53(4), 2101–2113 (1996)

    Article  ADS  Google Scholar 

  14. Bennewitz, R., Gnecco, E., Gyalog, T., Meyer, E.: Atomic friction studies on well-defined surfaces. Tribol. Lett. 10(1–2), 51–56 (2001)

    Article  CAS  Google Scholar 

  15. Howald, L., Meyer, E., Lüthi, R., Haefke, H., Overney, R., Rudin, H., Güntherodt, H.-J.: Multifunctional force microscope for facile operation in ultrahigh vacuum. Appl. Phys. Lett. 63(1), 117–119 (1993)

    Article  CAS  ADS  Google Scholar 

  16. Nonnenmacher, M., Greschner, J., Wolter, O., Kassing, R.: Scanning force microscopy with micromachined silicon devices. J. Vac. Sci. Technol. B 9(2), 1358–1362 (1991)

    Article  CAS  Google Scholar 

  17. Filleter, T., Paul, W., Bennewitz, R.: Atomic structure and friction of ultrathin films of KBr on Cu (100). Phys. Rev. B 77(3), 035430 (2008)

    Article  ADS  Google Scholar 

  18. Wöll, C., Chiang, S., Wilson, R.J., Lippel, P.H.: Determination of atom positions at stacking-fault dislocations on Au(111) by scanning tunneling microscopy. Phys. Rev. B 39(11), 7988–7991(1989)

    Article  ADS  Google Scholar 

  19. Jaklevic, R.C., Elie, L.: Scanning-tunneling-microscope observation of surface diffusion on an atomic scale: Au on Au (111). Phys. Rev. Lett. 60(2), 120–123 (1988)

    Article  CAS  PubMed  ADS  Google Scholar 

  20. Klunker, C., Hannon, J.B., Giesen, M., Ibach, Boisvert, G., Lewis, L.J.: Activation energy for the decay of two-dimensional islands on Cu(100). Phys. Rev. B 58(12), R7556 (1998)

    Article  CAS  ADS  Google Scholar 

  21. Jianping, G., Luedtke, W.D., Gourdon, D., Ruths, M., Israelachvili, J.N., Landman, U.: Frictional forces and Amontons’ law: from the molecular to the macroscopic scale. J. Phys. Chem. B 108(11), 3410–3425 (2004)

    Article  Google Scholar 

  22. Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457(7233), 1116–1119 (2009)

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Zhong, W., Tománek, D.: First-principles theory of atomic-scale friction. Phys. Rev. Lett. 64(25), 3054–3057 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  24. Socoliuc, A., Bennewitz, R., Gnecco, E., Meyer, E.: Transition from stick-slip to continuous sliding in atomic friction: entering a new regime of ultralow friction. Phys. Rev. Lett. 92(13), 134301(1–4) (2004)

  25. Tomlinson G.A.: A molecular theory of friction. Philos. Mag. Ser. 7, 905–939 (1929)

    CAS  Google Scholar 

  26. Krylov, S.Y., Frenken, J.W.M.: Thermal contact delocalization in atomic scale friction: a multitude of friction regimes. New J. Phys. 9(10), 398–424 (2007)

    Article  ADS  Google Scholar 

  27. Landman, U., Luedtke, W.D., Burnham, N.A., Colton, R.J.: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248(4954), 454–461 (1990)

    Article  CAS  PubMed  ADS  Google Scholar 

  28. Merkle, A.P., Marks, L.D.: Liquid-like tribology of gold studied by in situ TEM. Wear 265(11–12), 1864–1869 (2008)

    Article  CAS  Google Scholar 

  29. Rubio-Bollinger, G., Bahn, S.R., Agraït, N., Jacobsen,K.W., Vieira, S.: Mechanical properties and formation mechanisms of a wire of single gold atoms. Phys. Rev. Lett. 87(2), 026101 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgement

The authors wish to thankfully acknowledge various funding agencies including the Alfried Krupp von Bohlen und Halbach-Foundation, the Canada Foundation for Innovation (CFI), the Natural Research and Engineering Research Council (NSERC) for research funding and the Alexander von Humboldt foundation for a research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitya Nand Gosvami.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gosvami, N.N., Filleter, T., Egberts, P. et al. Microscopic Friction Studies on Metal Surfaces. Tribol Lett 39, 19–24 (2010). https://doi.org/10.1007/s11249-009-9508-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9508-5

Keywords

Navigation