Skip to main content

Advertisement

Log in

Nanoscale Material Removal Mechanism of Soft-Brittle HgCdTe Single Crystals Under Nanogrinding by Ultrafine Diamond Grits

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Damage-free subsurfaces of soft-brittle HgCdTe (MCT) single crystals were directly achieved after nanogrinding by a developed ultrafine diamond wheel. This is different from those of hard-brittle semiconductors, where there is usually a damaged layer found after mechanical machining. Two chips induced by nanogrinding with thicknesses varying from 23 to 27.1 nm attached on the ground MCT surface were observed, which is consistent well with a proposed model of chip thickness. Nanoscale material removal mechanism was investigated using high resolution transmission electron microscopy. Twins and nanocrystals were observed within the chips found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yan, J.W., Takahashi, H., Tamaki, J., Gai, X., Kuriyagawa, T.: Transmission electron microscopic observation of nanoindentations made on ductile-machined silicon wafers. Appl. Phys. Lett. 87, 211901 (2005)

    Article  Google Scholar 

  2. Zarudi, I., Nguyen, T., Zhang, L.C.: Effect of temperature and stress on plastic deformation in monocrystalline silicon induced by scratching. Appl. Phys. Lett. 86, 011922 (2005)

    Article  Google Scholar 

  3. Bradby, J.E., Williams, J.S., Leung, J.W., Swain, M.V., Munroe, P.: Nanoindentation-induced deformation of Ge. Appl. Phys. Lett. 80, 2353–2651 (2002)

    Article  Google Scholar 

  4. Wasmer, K., Wojtan, M.P., Gassilloud, R., Pouvreau, C., Tharian, J., Micher, J.: Plastic deformation modes of gallium arsenide in nanoindentation and nanoscratching. Appl. Phys. Lett. 90, 031902 (2007)

    Article  Google Scholar 

  5. Zhang, Z.Y., Guo, D.M., Kang, R.K., Gao, H., Jin, Z.J., Meng, Y.W.: Subsurface crystal lattice deformation machined by ultraprecision grinding of soft-brittle CdZnTe crystals. Int. J. Adv. Manuf. Technol. 47, 1065–1081 (2010)

    Article  Google Scholar 

  6. Zhang, Z.Y., Meng, Y.W., Guo, D.M., Wu, L.L., Tian, Y.J., Liu, R.P.: Material removal mechanism of precision grinding of soft-brittle CdZnTe wafers. Int. J. Adv. Manuf. Technol. 46, 563–569 (2010)

    Article  Google Scholar 

  7. Rogalski, A.: HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68, 2267–2336 (2005)

    Article  CAS  Google Scholar 

  8. Martyniuk, M., Sewell, R.H., Musca, C.A., Dell, J.M., Faraone, L.: Nanoindentation of HgCdTe prepared by molecular beam epitaxy. Appl. Phys. Lett. 87, 251905 (2005)

    Article  Google Scholar 

  9. Gopal, A.V., Rao, P.V.: A new chip-thickness model for performance assessment of silicon carbide grinding. Int. J. Adv. Manuf. Technol. 24, 816–820 (2004)

    Article  Google Scholar 

  10. Snoeys, R., Peters, J.: Significance of chip thickness in grinding. Ann. CIRP 23, 227–237 (1974)

    Google Scholar 

  11. Reichenbach, G.S., Mayer, J.E., Kalpakcioglu, S., Shaw, M.C.: Role of chip thickness in grinding. Trans. ASME 78, 847–859 (1956)

    Google Scholar 

  12. Malkin, S.: Grinding technology, theory and applications of machining with abrasives. Ellis Horwood, Chichester (1989)

    Google Scholar 

  13. Tomlinson, W.J., Stapley, D.: Thermal conductivity of epoxy resin-aluminium (0–50%) composites. J. Mater. Sci. 12, 1689–1690 (1977)

    Article  CAS  Google Scholar 

  14. Inasaki, I.: Creep feed grinding with continuous dressing. Ann. CIRP 36, 227–230 (1987)

    Article  Google Scholar 

  15. Eberg, E., Monsen, A.F., Tybell, T., van Helvoort, A.T.J., Holmestad, R.: Comparison of TEM specimen preparation of perovskite thin films by tripod polishing and conventional ion milling. J. Electron Microsc. 57, 175–179 (2008)

    Article  CAS  Google Scholar 

  16. Agarwal, S., Rao, P.V.: Grinding characteristics, material removal and damage formation mechanisms in high removal rate grinding of silicon carbide. Int. J. Mach. Tools Manuf. 50, 1077–1087 (2010)

    Article  Google Scholar 

  17. Xu, L.M., Shen, B., Shih, A.J.: Vitreous bond silicon carbide wheel for grinding of silicon nitride. Int. J. Mach. Tools Manuf. 46, 631–639 (2006)

    Article  Google Scholar 

  18. Fan, S.W., Zhang, L.T., Cheng, L.F., Tian, G.L., Yang, S.J.: Effect of braking pressure and braking speed on the tribological properties of C/SiC aircraft brake materials. Compos. Sci. Technol. 70, 959–965 (2010)

    Article  CAS  Google Scholar 

  19. Goswami, A.P., Das, G.C.: Role of fabrication route and sintering on wear and mechanical properties of liquid-phase-sintered alumina. Ceram. Int. 26, 807–819 (2000)

    Article  CAS  Google Scholar 

  20. Avalos, J.C.R., Ramirez, A.M., Limon, J.M.Y., Garcia, M.E.C., Guzman, E.M.A., Hernandez, J.G.: Development and characterization of an inorganic foam obtained by using sodium bicarbonate as a gas generator. Constr. Build. Mater. 19, 543–549 (2005)

    Article  Google Scholar 

  21. Xu, H.H.K., Jahanmir, S., Ives, L.K.: Effect of grinding on strength of tetragonal zirconia and zirconia-toughened alumina. Mach. Sci. Technol. 1, 49–66 (1997)

    Article  CAS  Google Scholar 

  22. Renault, P.O., Barbot, J.F., Girault, P., Declemy, A., Rivaud, G., Blanchard, C.: Properties of dislocations in HgCdTe crystals. J. Phys. III. 5, 1383–1389 (1995)

    CAS  Google Scholar 

  23. Foll, H., Carter, C.B.: Direct TEM determination of intrinsic and extrinsic stacking fault energies of silicon. Philos. Mag. A 40, 497–510 (1979)

    Article  CAS  Google Scholar 

  24. Ray, I.L.F., Cockayne, D.J.H.: Investigation of dislocation geometries in the diamond cubic structure. J. Microsc. 98, 170–173 (1973)

    Article  Google Scholar 

  25. Gomez, A.M., Hirsch, P.B.: The dissociation of dislocations in GaAs. Philos. Mag. A 38, 733–737 (1978)

    Article  CAS  Google Scholar 

  26. Gogotsi, Y.G., Domnich, V., Dub, S.N., Kailer, A., Nickel, K.G.: Cyclic nanoindentation and Raman microspectroscopy study of phase transformations in semiconductors. J. Mater. Res. 15, 871–879 (2000)

    Article  CAS  Google Scholar 

  27. Sabinina, I.V., Gutakovsky, A.K., Sidorov, Y.G., Latyshev, A.: Nature of V-shaped defects in HgCdTe epilayers grown by molecular beam epitaxy. J. Cryst. Growth 274, 339–346 (2005)

    Article  CAS  Google Scholar 

  28. Material Safety Dada Sheet for MCT. Spitfire Semiconductors Inc. http://www.spitfirenz.com/ (2004)

  29. Material Safety Dada Sheet for Si, Ge and GaAs. Sciencelab.com, Inc. http://www.sciencelab.com/ (2005)

  30. Sanjay, A., Venkateswara, R.P.: Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding. Int. J. Mach. Tools Manuf. 48, 689–710 (2008)

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial supports from the National Natural Science Foundation of China (91123013), and the Science and Technology Project of Dalian City of China (2009A18GX014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenyu Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Song, Y., Huo, F. et al. Nanoscale Material Removal Mechanism of Soft-Brittle HgCdTe Single Crystals Under Nanogrinding by Ultrafine Diamond Grits. Tribol Lett 46, 95–100 (2012). https://doi.org/10.1007/s11249-012-9924-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-9924-9

Keywords

Navigation