Skip to main content
Log in

Relating Molecular Structure to Tribological Chemistry: Borate Esters on Copper

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The surface and tribological chemistry of 2-propanol and borate esters, isopropoxy tetramethyl dioxaborolane (ITDB), and tetramethyl dioxaborolane (TDB) as gas-phase lubricants for copper surfaces are compared by measuring the friction coefficient and contact resistance in an ultrahigh vacuum tribometer. 2-propanol reacts on copper below room temperature to desorb primarily acetone and causes no friction reduction when used as a gas-phase lubricant. TDB decomposes to deposit BOx species on the surface and produces an initial decrease in friction coefficient that is not sustained. ITDB, which reacts at room temperature to form a tetramethyl dioxaborolide species on the surface, results in an immediate and sustained decrease in friction coefficient when used as a gas-phase lubricant for copper. This indicates that the surface chemistry of the borate esters can be correlated with their tribological properties and illustrates the effect of replacing a hydrogen atom in TDB with a 2-propoxy group in ITDB on both the surface and tribological chemistry. Analysis of the species formed in the wear track after lubrication with ITDB reveals the presence of graphitic or diamond-like carbon and oxygen, and these elements are also found in the subsurface region of the sample. Rubbing the sample in vacuo after reacting with ITDB shows the removal of a boundary film where the coefficient remains constant and the subsequent removal of the subsurface layer in which the contact resistance rises to its original value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Blunt, T.J., Kotvis, P.V., Tysoe, W.T.: Determination of interfacial temperatures under extreme pressure conditions. Tribol. Lett. 2(3), 221–230 (1996). doi:10.1007/bf00173128

    Article  CAS  Google Scholar 

  2. Furlong, O.J., Miller, B.P., Kotvis, P., Tysoe, W.T.: Low-temperature, shear-induced tribofilm formation from dimethyl disulfide on copper. ACS Appl Mater Interfaces 3(3), 795–800 (2011). doi:10.1021/am101149p

    Article  CAS  Google Scholar 

  3. Furlong, O., Miller, B., Tysoe, W.T.: Shear-induced boundary film formation from dialkyl sulfides on copper. Wear 274–275, 183–187 (2012). doi:10.1016/j.wear.2011.08.022

    Article  Google Scholar 

  4. Furlong, O., Miller, B., Tysoe, W.: Shear-induced surface-to-bulk transport at room temperature in a sliding metal–metal interface. Tribol. Lett. 41(1), 257–261 (2011). doi:10.1007/s11249-010-9711-4

    Article  CAS  Google Scholar 

  5. Miller, B., Furlong, O., Tysoe, W.T.: The kinetics of shear-induced boundary film formation from dimethyl disulfide on copper. Tribol. Lett. (2012). doi:10.1007/s11249-012-0040-7

  6. Washburn Robert, M., Levens, E., Albright Charles, F., Billig Franklin, A.: Preparation, properties, and uses of borate esters. In: Metal-Organic Compounds, Advances in Chemistry vol. 23, pp. 129–157. American Chemical Society, New Orleans (1959)

  7. Adams, J.H.: Borate—a new generation EP gear lubricant. Lubr. Eng. 33(5), 6 (1977)

    Google Scholar 

  8. Kreuz, K.L., Fein, R.S., Dundy, M.: EP films from borate lubricants. ASLE Trans 10(1), 67–76 (1967). doi:10.1080/05698196708972166

    Article  CAS  Google Scholar 

  9. Philippon, D., De Barros-Bouchet, M.I., Lerasle, O., Le Mogne, T., Martin, J.M.: Experimental simulation of tribochemical reactions between borates esters and steel surface. Tribol. Lett. 41(1), 73–82 (2011). doi:10.1007/s11249-010-9685-2

    Article  CAS  Google Scholar 

  10. Kimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H.: Boron nitride as a lubricant additive. Wear 232(2), 199–206 (1999). doi:10.1016/s0043-1648(99)00146-5

    Article  CAS  Google Scholar 

  11. Goto, M., Kasahara, A., Tosa, M., Yoshihara, K.: Control of frictional force on coating films of boron nitride-copper complex in ultra high vacuum. Thin Solid Films 405(1), 300–303 (2002). doi:10.1016/s0040-6090(01)01727-8

    Article  CAS  Google Scholar 

  12. Erdemir, A., Bindal, C., Fenske, G.R.: Formation of ultralow friction surface films on boron carbide. Appl. Phys. Lett. 68(12), 1637–1639 (1996)

    Article  CAS  Google Scholar 

  13. Hu, Z.S., Yie, Y., Wang, L.G., Chen, G.X., Dong, J.X.: Synthesis and tribological properties of ferrous octoxyborate as antiwear and friction-reducing additive of lubricating oil. Tribol. Lett. 8(1), 45–50 (2000). doi:10.1023/a:1019154327736

    Article  CAS  Google Scholar 

  14. Zheng, Z., Shen, G., Wan, Y., Cao, L., Xu, X., Yue, Q., Sun, T.: Synthesis, hydrolytic stability and tribological properties of novel borate esters containing nitrogen as lubricant additives. Wear 222(2), 135–144 (1998). doi:10.1016/s0043-1648(98)00323-8

    Article  CAS  Google Scholar 

  15. Miller, B.P., Furlong, O.J., Tysoe, W.T.: Surface chemistry of isopropoxy tetramethyl dioxaborolane on Cu(111). Langmuir 28(15), 6322–6327 (2012). doi:10.1021/la300276q

    Article  CAS  Google Scholar 

  16. Davis, J.L., Barteau, M.A.: Decarbonylation and decomposition pathways of alcohol’s on Pd(111). Surf. Sci. 187(2–3), 387–406 (1987). doi:10.1016/s0039-6028(87)80064-x

    Article  CAS  Google Scholar 

  17. Sexton, B.A., Rendulic, K.D., Huges, A.E.: Decomposition pathways of C1–C4 alcohols adsorbed on platinum (111). Surf. Sci. 121(1), 181–198 (1982). doi:10.1016/0039-6028(82)90245-x

    Article  CAS  Google Scholar 

  18. Gleason, N., Guevremont, J., Zaera, F.: Thermal chemistry of 2-propanol and 2-propyl iodide on clean and oxygen-pretreated Ni(100) single-crystal surfaces. J. Phys. Chem. B 107(40), 11133–11141 (2003). doi:10.1021/jp035335s

    Article  CAS  Google Scholar 

  19. Bowker, M., Madix, R.J.: XPS, UPS and thermal desorption studies of alcohol adsorption on Cu(110): II. Higher alcohols. Surf. Sci. 116(3), 549–572 (1982). doi:10.1016/0039-6028(82)90364-8

    Article  CAS  Google Scholar 

  20. Street, S.C., Gellman, A.J.: FT-IRAS of adsorbed alkoxides: 1-propoxide on Cu(111). Surf. Sci. 372(1–3), 223–238 (1997). doi:10.1016/s0039-6028(96)01000-x

    Article  CAS  Google Scholar 

  21. Street, S.C., Gellman, A.J.: Quantitative adsorbate orientation from vibrational data—ethoxides on Cu(111). J. Chem. Phys. 105(16), 7158–7170 (1996)

    Article  Google Scholar 

  22. Janssens, T., Clausen, B., Hvolbæk, B., Falsig, H., Christensen, C., Bligaard, T., Nørskov, J.: Insights into the reactivity of supported Au nanoparticles: combining theory and experiments. Top. Catal. 44(1), 15–26 (2007). doi:10.1007/s11244-007-0335-3

    Article  CAS  Google Scholar 

  23. Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Pressure dependence of shear strengths of thin films on metal surfaces measured in ultrahigh vacuum. Tribol. Lett. 31(2), 99–106 (2008). doi:10.1007/s11249-008-9342-1

    Article  Google Scholar 

  24. Kotvis, P.V., Tysoe, W.T.: Surface chemistry of chlorinated hydrocarbon lubricant additives—part I: extreme-pressure tribology. Tribol. Trans. 41(1), 117–123 (1998). doi:10.1080/10402009808983729

    Article  CAS  Google Scholar 

  25. Blunt, T.J., Kotvis, P.V., Tysoe, W.T.: Surface chemistry of chlorinated hydrocarbon lubricant additives—part II: modeling the tribological interface. Tribol. Trans. 41(1), 129–139 (1998). doi:10.1080/10402009808983731

    Article  CAS  Google Scholar 

  26. Hanke, G., Muller, K.: Low energy Auger transitions of boron in several boron compounds. J. Vac. Sci. Technol. A 2(2), 964–968 (1984)

    Article  CAS  Google Scholar 

  27. Mizokawa, Y., Miyasato, T., Nakamura, S., Geib, K.M., Wilmsen, C.W.: Comparison of the C KLL first-derivative Auger spectra from XPS and AES using diamond, graphite. SiC and diamond-like-carbon films. Surf. Sci. 182(3), 431–438 (1987). doi:10.1016/0039-6028(87)90011-2

    Article  CAS  Google Scholar 

  28. Pehrsson, P.E., Ramaker, D.: Chemistry and localization effects in the C-KVV Auger line-shapes of transition-metal carbides and related compounds. J. Mater. Res. 8(10), 2716–2724 (1993). doi:10.1557/jmr.1993.2716

    Article  CAS  Google Scholar 

  29. Haas, T.W., Grant, J.T., Dooley Iii, G.J.: Chemical effects in Auger electron spectroscopy. J. Appl. Phys. 43(4), 1853–1860 (1972)

    Article  CAS  Google Scholar 

  30. Mroczkowski, S., Lichtman, D.: Calculated Auger yields and sensitivity factors for KLL-NOO transitions with 1–10 kV primary beams. J. Vac. Sci. Technol. A 3(4), 1860–1865 (1985)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the Chemistry Division of the National Science Foundation under Grant Number CHE-9213988 and the Office of Naval Research for support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred T. Tysoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, B.P., Kotvis, P.V., Furlong, O.J. et al. Relating Molecular Structure to Tribological Chemistry: Borate Esters on Copper. Tribol Lett 49, 21–29 (2013). https://doi.org/10.1007/s11249-012-0038-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-012-0038-1

Keywords

Navigation