Skip to main content

Advertisement

Log in

Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The friction coefficient is measured for systems consisting of a thin potassium chloride film deposited onto a variety of clean, flat metal substrates, namely Pb, Sn, Au, Ag, Cu, Pd, Fe, Ta, and two types of steel, which are rubbed by a tungsten carbide pin in an ultrahigh vacuum. The friction coefficients are plotted versus 1/H S, the inverse of the substrate hardness, where two regimes are found. In the first regime, where deformation at the asperity tips is suggested to be plastic, the observed variation in friction coefficient with substrate hardness is rationalized by assuming that the shear strength S for sliding on a KCl film varies with contact pressure P as S = S 0 + aP, yielding values for a of 0.14 ± 0.02 and S 0 of ~60–70 MPa. In the second regime, it is proposed that the softer, film-covered Pb and Sn substrates are closer to being in conformal contact with the rough tribopin. These values of S 0 and a, along with the measured surface asperity height distribution of the tribopin and the value of the friction coefficient for a KCl monolayer on the metal, are used to rationalize the observed increase in friction coefficient with increasing film thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wu, G., Gao, F., Kaltchev, M., Gutow, J., Mowlem, J., Schramm, W.C., et al.: An investigation of the tribological properties of thin KCl films on iron in ultrahigh vacuum: modeling the extreme-pressure lubricating interface. Wear 252, 595–606 (2002). doi:10.1016/S0043-1648(02)00009-1

    Article  CAS  Google Scholar 

  2. Gao, F., Kaltchev, M., Kotvis, P.V., Tysoe, W.T.: The tribological properties of monolayer KCl films on iron in ultrahigh vacuum: modeling the extreme-pressure lubricating interface. Tribol. Lett. 14, 99–104 (2003). doi:10.1023/A:1021752203606

    Article  CAS  Google Scholar 

  3. Gao, F., Kotvis, P.V., Tysoe, W.T.: The frictional properties of thin inorganic halide films on iron measured in ultrahigh vacuum. Tribol. Lett. 15, 327–332 (2003). doi:10.1023/A:1024833807985

    Article  CAS  Google Scholar 

  4. Gao, F., Kotvis, P.V., Tysoe, W.T.: The friction, mobility and transfer of tribological films: potassium chloride and ferrous chloride on iron. Wear 256, 1005–1017 (2004)

    Article  CAS  Google Scholar 

  5. Gao, F., Kotvis, P.V., Tysoe, W.T.: The frictional behavior of thin halide films on iron. Tribol. Trans. 47, 208–217 (2004)

    Article  CAS  Google Scholar 

  6. Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A 295, 300–319 (1966)

    Article  CAS  Google Scholar 

  7. Bridgeman, P.W.: Shearing phenomena at high pressure, particularly in inorganic compounds. Proc. Am. Acad. Arts Sci. 71, 387–460 (1937)

    Google Scholar 

  8. Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir-Blodgett layers. Proc. R. Soc. Lond. A 380, 389–407 (1982)

    CAS  Google Scholar 

  9. Søresen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B 53, 2101 (1996)

    Article  Google Scholar 

  10. Riedo, E., Gnecco, E., Bennewitz, R., Meyer, E., Brume, H.: Interaction potential and attempt frequency governing sliding friction. Phys. Rev. Lett. 91, 084502.1–084502.4 (2003)

    Article  CAS  Google Scholar 

  11. He, G., Robbins, M.O.: Simulations of the kinetic friction due to adsorbed surface layers. Tribol. Lett. 10, 7–14 (2001)

    Article  CAS  Google Scholar 

  12. Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  13. Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Oxford University Press, London (1964)

    Google Scholar 

  14. Holm, R.: Electrical Contacts. Springer-Verlag, New York (1967)

    Google Scholar 

  15. Merchant, M.E.: The mechanism of static friction. J. Appl. Phys. 11, 230 (1940)

    Article  Google Scholar 

  16. Wytenburg, W.J., Lambert, R.M.: Long-lived aluminium evaporation source for controlled, reproducible deposition of clean ultrathin films under ultrahigh vacuum conditions. J. Vac. Sci. Technol. 10, 3579–3598 (1992)

    Article  Google Scholar 

  17. Greenwood, J.A., Tripp, J.H.: The elastic contact of rough sphere. Trans. ASME J. Appl. Mech. 34, 153–159 (1967)

    Google Scholar 

  18. Moses, A.J.: Handbook of Electronic Materials, vol. 1. IFI/Plenum, New York (1971)

    Google Scholar 

  19. Musikant, S.: Optical Materials. Marcel Dekker, Inc., New York (1985)

    Google Scholar 

  20. Finken, E.F.: A theory for the effects of film thickness and normal load in the friction of thin films. ASME J. Lubr. Technol. 91, 551–556 (1969)

    Google Scholar 

  21. ASM Handbook, Vol. 18. American Society for Metals, Metals Park (1992)

  22. CRC Handbook of Chemistry and Physics. CRC Press, Cleveland (2000)

Download references

Acknowledgments

We gratefully acknowledge the support for this work by the Chemistry Division of the National Science Foundation under Grant No. CHE-9213988. We thank Prof. Ken Johnson for extremely useful discussions and Prof. H. Lopez for his help with the Hardness measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. T. Tysoe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gao, F., Furlong, O., Kotvis, P.V. et al. Pressure Dependence of Shear Strengths of Thin Films on Metal Surfaces Measured in Ultrahigh Vacuum. Tribol Lett 31, 99–106 (2008). https://doi.org/10.1007/s11249-008-9342-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9342-1

Keywords

Navigation