Skip to main content
Log in

Aqueous Lubrication of SiC and Si3N4 Ceramics Aided by a Brush-like Copolymer Additive, Poly(l-lysine)-graft-poly(ethylene glycol)

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We have examined the adsorption properties of poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG)—a brush-like polymer—on Si3N4 and SiC surfaces and determined its impact on the aqueous lubrication of Si3N4 and SiC at various speeds and applied loads. The addition of PLL-g-PEG in aqueous solution reduces the interfacial friction forces significantly for self-mated sliding contacts of these two ceramics, as compared to lubrication with water or buffer solution alone. For SiC, the improved lubricating performance by addition of PLL-g-PEG was apparent for all tested speeds (from 1.4 to 185 mm/s under 2 N load). For Si3N4, the effect was more apparent in the slow-speed regime (≤20 mm/s under 2 N load) than in the high-speed regime (>100 mm/s), where extremely low coefficients of friction (μ ≤ 0.006) are readily achieved by aqueous buffer solution alone. It was further observed that the optimal lubricating effect with Si3N4 is achieved when the tribopairs are first run-in in polymer-free aqueous buffer to render the sliding surfaces smooth, after which the PLL-g-PEG copolymer is added to the buffer solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Wong, H.C., Umehara, N., Kato, K.: The effect of surface roughness on friction of ceramics sliding in water. Wear 218, 237–243 (1998). doi:10.1016/S0043-1648(98)00208-7

    Article  CAS  Google Scholar 

  2. Wang, X., Kato, K., Adachi, K.: The critical condition for the transition from HL to ML in water-lubricated SiC. Tribol. Lett. 16, 253–258 (2004). doi:10.1023/B:TRIL.0000015200.37141.f5

    Article  CAS  Google Scholar 

  3. Tomizawa, H., Fischer, T.E.: Friction and wear of silicon nitride and silicon carbide in water: hydrodynamic lubrication at low sliding speed obtained by tribochemical wear. Tribol. Trans. 30, 41–46 (1987). doi:10.1080/05698198708981728

    Article  CAS  Google Scholar 

  4. Sasaki, S.: The effects of the surrounding atmosphere on the friction and wear of alumina, zirconia, silicon-carbide and silicon-nitride. Wear 134, 185–200 (1989). doi:10.1016/0043-1648(89)90068-9

    Article  CAS  Google Scholar 

  5. Hah, S.R., Fischer, T.E.: Tribochemical polishing of silicon nitride. J. Electrochem. Soc. 145, 1708–1714 (1998). doi:10.1149/1.1838544

    Article  CAS  Google Scholar 

  6. Muratov, V.A., Luangvaranunt, T., Fischer, T.E.: The tribochemistry of silicon nitride: effects of friction, temperature and sliding velocity. Tribol. Int. 31, 601–611 (1998). doi:10.1016/S0301-679X(98)00081-4

    Article  CAS  Google Scholar 

  7. Muratov, V.A., Olsen, J.E., Gallois, B.M., Fischer, T.E., Bean, J.C.: Tribochemical reactions of silicon: an in situ infrared spectroscopy characterization. J. Electrochem. Soc. 145, 2465–2470 (1998). doi:10.1149/1.1838661

    Article  CAS  Google Scholar 

  8. Hah, S.R., Burk, C.B., Fischer, T.E.: Surface quality of tribochemically polished silicon nitride. J. Electrochem. Soc. 146, 1505–1509 (1999). doi:10.1149/1.1391795

    Article  CAS  Google Scholar 

  9. Zhu, Z.Z., Muratov, V., Fischer, T.E.: Tribochemical polishing of silicon carbide in oxidant solution. Wear 229, 848–856 (1999). doi:10.1016/S0043-1648(98)00392-5

    Article  Google Scholar 

  10. Xu, J.G., Kato, K.: Formation of tribochemical layer of ceramics sliding in water and its role for low friction. Wear 245, 61–75 (2000). doi:10.1016/S0043-1648(00)00466-X

    Article  CAS  Google Scholar 

  11. Chen, M., Kato, K., Adachi, K.: The difference in running-in period and friction coefficient between self-mated Si3N4 and SiC under water lubrication. Tribol. Lett. 11, 23–28 (2001). doi:10.1023/A:1016621929078

    Article  MATH  Google Scholar 

  12. Jordi, L., Iliev, C., Fischer, T.E.: Lubrication of silicon nitride and silicon carbide by water: running in, wear and operation of sliding bearings. Tribol. Lett. 17, 367–376 (2004). doi:10.1023/B:TRIL.0000044485.77019.fb

    Article  CAS  Google Scholar 

  13. Muratov, V.A., Fischer, T.E.: Tribochemical polishing. Annu. Rev. Mater. Sci. 30, 27–51 (2000). doi:10.1146/annurev.matsci.30.1.27

    Article  CAS  Google Scholar 

  14. Jahanmir, S., Fischer, T.E.: Friction and wear of silicon nitride lubricated by humid air, water, hexadecane and hexadecane + 0.5 percent stearic acid. Tribol. Trans. 31, 32–43 (1988). doi:10.1080/10402008808981795

    Article  CAS  Google Scholar 

  15. Klopman, G.: Chemical reactivity and concept of charge- and frontier-controlled reactions. J. Am. Chem. Soc. 90, 223–234 (1968). doi:10.1021/ja01004a002

    Article  CAS  Google Scholar 

  16. Kalin, M., Novak, S., Vizintin, J.: Surface charge as a new concept for boundary lubrication of ceramics with water. J. Phys. D Appl. Phys. 39, 3138–3149 (2006). doi:10.1088/0022-3727/39/15/S03

    Article  ADS  CAS  Google Scholar 

  17. Phillips, B.S., Zabinski, J.S.: Ionic liquid lubrication effects on ceramics in a water environment. Tribol. Lett. 17, 533–541 (2004). doi:10.1023/B:TRIL.0000044501.64351.68

    Article  CAS  Google Scholar 

  18. Lee, S., Muller, M., Ratoi-Salagean, M., Voros, J., Pasche, S., De Paul, S.M., Spikes, H.A., Textor, M., Spencer, N.D.: Boundary lubrication of oxide surfaces by poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) in aqueous media. Tribol. Lett. 15, 231–239 (2003). doi:10.1023/A:1024861119372

    Article  CAS  Google Scholar 

  19. Muller, M., Lee, S., Spikes, H.A., Spencer, N.D.: The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) adsorbed on oxide surfaces. Tribol. Lett. 15, 395–405 (2003). doi:10.1023/B:TRIL.0000003063.98583.bb

    Article  Google Scholar 

  20. Yan, X., Perry, S.S., Spencer, N.D., Pasche, S., De Paul, S.M., Textor, M., Lim, M.S.: Reduction of friction at oxide interfaces upon polymer adsorption from aqueous solutions. Langmuir 20, 423–428 (2004). doi:10.1021/la035785b

    Article  MATH  PubMed  CAS  Google Scholar 

  21. Lee, S., Voros, J.: An aqueous-based surface modification of poly(dimethylsiloxane) with poly(ethylene glycol) to prevent biofouling. Langmuir 21, 11957–11962 (2005). doi:10.1021/la051932p

    Article  PubMed  CAS  Google Scholar 

  22. Muller, M.T., Yan, X., Lee, S., Perry, S.S., Spencer, N.D.: Preferential solvation and its effect on the lubrication properties of a surface-bound, brushlike copolymer. Macromolecules 38, 3861–3866 (2005). doi:10.1021/ma047468x

    Article  Google Scholar 

  23. Muller, M.T., Yan, X., Lee, S., Perry, S.S., Spencer, N.D.: Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38, 5706–5713 (2005). doi:10.1021/ma0501545

    Article  Google Scholar 

  24. Lee, S., Muller, M., Heeb, R., Zurcher, S., Tosatti, S., Heinrich, M., Amstad, F., Pechmann, S., Spencer, N.D.: Self-healing behavior of a polyelectrolyte-based lubricant additive for aqueous lubrication of oxide materials. Tribol. Lett. 24, 217–223 (2006). doi:10.1007/s11249-006-9121-9

    Article  CAS  Google Scholar 

  25. Lee, S., Spencer, N.D.: Aqueous lubrication of polymers: influence of surface modification. Tribol. Int. 38, 922–930 (2006). doi:10.1016/j.triboint.2005.07.017

    Article  Google Scholar 

  26. Drobek, T., Spencer, N.D.: Nanotribology of surface-grafted PEG layers in an aqueous environment. Langmuir 24, 1484–1488 (2007). doi:10.1021/la702289n

    Article  PubMed  Google Scholar 

  27. Lee, S., Spencer, N.D.: Poly(L-lysine)-graft-poly(ethylene glycol): a versatile aqueous lubricant additive for tribosystems involving thermoplastics. Lubr. Sci. 20, 21–34 (2007). doi:10.1002/ls.50

    Article  CAS  Google Scholar 

  28. Lee, S., Spencer, N.D.: Achieving ultralow friction by aqueous, brush-assisted lubrication. In: Erdemir, A., Martin, J.M. (eds.) Superlubricity, pp. 365–396. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  29. Lee, S., Spencer, N.D.: Materials science. Sweet, hairy, soft, and slippery. Science 319, 575–576 (2008). doi:10.1126/science.1153273

    Article  PubMed  CAS  Google Scholar 

  30. Hartung, W., Drobek, T., Lee, S., Zürcher, S., Spencer, N.: The influence of anchoring-group structure on the lubricating properties of brush-forming graft copolymers in an aqueous medium. Tribol. Lett. 31, 119–128 (2008). doi:10.1007/s11249-008-9344-z

    Article  CAS  Google Scholar 

  31. Du, H., Tressler, R.E., Spear, K.E.: Thermodynamics of the Si-N-O system and kinetic modeling of oxidation of Si3N4. J. Electrochem. Soc. 136, 3210–3215 (1989). doi:10.1149/1.2096427

    Article  CAS  Google Scholar 

  32. Kenausis, G.L., Voros, J., Elbert, D.L., Huang, N., Hofer, R., Ruiz-Taylor, L., Textor, M., Hubbell, J.A., Spencer, N.D.: Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J. Phys. Chem. B 104, 3298–3309 (2000). doi:10.1021/jp993359m

    Article  CAS  Google Scholar 

  33. Huang, N.P., Michel, R., Voros, J., Textor, M., Hofer, R., Rossi, A., Elbert, D.L., Hubbell, J.A., Spencer, N.D.: Poly(L-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 17, 489–498 (2001). doi:10.1021/la000736+

    Article  CAS  Google Scholar 

  34. Pasche, S., De Paul, S.M., Voros, J., Spencer, N.D., Textor, M.: Poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: a quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir 19, 9216–9225 (2003). doi:10.1021/la034111y

    Article  CAS  Google Scholar 

  35. Wagner, M.S., Pasche, S., Castner, D.G., Textor, M.: Characterization of poly(L-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium pentoxide substrates using time-of-flight secondary ion mass spectrometry and multivariate analysis. Anal. Chem. 76, 1483–1492 (2004). doi:10.1021/ac034873y

    Article  PubMed  CAS  Google Scholar 

  36. Elbert, D.L., Hubbell, J.A.: Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chem. Biol. 5, 177–183 (1998). doi:10.1016/S1074-5521(98)90062-X

    Article  PubMed  CAS  Google Scholar 

  37. Sawhney, A.S., Hubbell, J.A.: Poly(ethylene oxide)-graft-poly(L-lysine) copolymers to enhance the biocompatibility of poly(L-lysine)-alginate microcapsule membranes. Biomaterials 13, 863–870 (1992). doi:10.1016/0142-9612(92)90180-V

    Article  PubMed  CAS  Google Scholar 

  38. Azzam, R.M.A., Bashara, N.M.: Ellipsometry and Polarized Light. North-Holland, Amsterdam (1987)

    Google Scholar 

  39. Contarini, S., Howlett, S.P., Rizzo, C., De Angelis, B.A.: XPS study on the dispersion of carbon additives in silicon carbide powders. Appl. Surf. Sci. 51, 177–183 (1991). doi:10.1016/0169-4332(91)90400-E

    Article  ADS  CAS  Google Scholar 

  40. Bertoti, I., Varsanyi, G., Mink, G., Szekely, T., Vaivads, J., Millers, T., Grabis, J.: XPS characterization of ultrafine Si3N4 powders. Surf. Interface Anal. 12, 527–530 (1988). doi:10.1002/sia.740121004

    Article  Google Scholar 

  41. Raider, S.I., Flitsch, R., Aboaf, J.A., Pliskin, W.A.: Surface oxidation of silicon nitride films. J. Electrochem. Soc. 123, 560–565 (1976). doi:10.1149/1.2132877

    Article  CAS  Google Scholar 

  42. Saito, T., Imada, Y., Honda, F.: An analytical observation of the tribochemical reaction of silicon nitride sliding with low friction in aqueous solutions. Wear 205, 153–159 (1997). doi:10.1016/S0043-1648(96)07287-0

    Article  CAS  Google Scholar 

  43. Lee, S., Iten, R., Muller, M., Spencer, N.D.: Influence of molecular architecture on the adsorption of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) on PDMS surfaces and implications for aqueous lubrication. Macromolecules 37, 8349–8356 (2004). doi:10.1021/ma049076w

    Article  CAS  Google Scholar 

  44. Drobek, T., Spencer, N.D., Heuberger, M.: Compressing PEG brushes. Macromolecules 38, 5254–5259 (2005). doi:10.1021/ma0504217

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Research Commission of the ETH Zurich for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Spencer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartung, W., Rossi, A., Lee, S. et al. Aqueous Lubrication of SiC and Si3N4 Ceramics Aided by a Brush-like Copolymer Additive, Poly(l-lysine)-graft-poly(ethylene glycol). Tribol Lett 34, 201–210 (2009). https://doi.org/10.1007/s11249-009-9424-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-009-9424-8

Keywords

Navigation