Skip to main content
Log in

The Influence of Anchoring-Group Structure on the Lubricating Properties of Brush-Forming Graft Copolymers in an Aqueous Medium

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We have compared the lubricating properties of two different PEG-grafted, polycationic, brush-forming copolymers to gain a deeper understanding of the role of the polyionic backbone in the lubricating behavior of such materials, when used as additives in aqueous lubricant systems. Previously, poly(l-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) has been shown to adsorb onto oxide surfaces from aqueous solution and substantially lower frictional forces. Poly(allylamine)-graft-poly(ethylene glycol) (PAAm-g-PEG), which also has a polycationic backbone, has been synthesized in several different architectures, and its performance investigated via adsorption tests, rolling- and sliding-contact tribometry, and the surface forces apparatus. These tests show a clear reduction of friction forces with PAAm-g-PEG compared to water alone. However, when compared with PLL-g-PEG, while PAAm-g-PEG copolymers did not adsorb to the same extent or exhibit as high a lubricity in sliding geometry, they showed a similar lubricating effect under rolling conditions. The difference in the chemical structure of the backbones, especially the flexibility of the anchoring groups, appears to significantly influence both the extent and kinetics of polymer adsorption, which in turn influences lubrication behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig 7

Similar content being viewed by others

Notes

  1. as calculated with ChemDraw version 10.0 (CambridgeSoft, Cambridge, Massachusetts, USA).

References

  1. Klein, J., Luckham, P.F.: Forces between two adsorbed poly(ethylene oxide) layers in a good aqueous solvent in the range 0–150 nm. Macromolecules 17, 1041–1048 (1984). doi:10.1021/ma00135a011

    Article  CAS  Google Scholar 

  2. Taunton, H.J., Toprakcioglu, C., Fetters, L.J., Klein, J.: Interactions between surfaces bearing end-adsorbed chains in a good solvent. Macromolecules 23, 571–580 (1990). doi:10.1021/ma00204a033

    Article  CAS  Google Scholar 

  3. Raviv, U., Frey, J., Sak, R., Laurat, P., Tadmor, R., Klein, J.: Properties and interactions of physigrafted end-functionalized poly(ethylene glycol) layers. Langmuir 18, 7482–7495 (2002). doi:10.1021/la020002s

    Article  Google Scholar 

  4. Lee, S., Muller, M., Ratoi-Salagean, M., Voros, J., Pasche, S., De Paul, S.M., et al.: Boundary lubrication of oxide surfaces by poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-peg) in aqueous media. Tribol. Lett. 15, 231–239 (2003). doi:10.1023/A:1024861119372

    Article  Google Scholar 

  5. Muller, M., Lee, S., Spikes, H.A., Spencer, N.D.: The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(l-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) adsorbed on oxide surfaces. Tribol. Lett. 15, 395–405 (2003). doi:10.1023/B:TRIL.0000003063.98583.bb

    Article  Google Scholar 

  6. Lee, S., Iten, R., Muller, M., Spencer, N.D.: Influence of molecular architecture on the adsorption of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) on pdms surfaces and implications for aqueous lubrication. Macromolecules 37, 8349–8356 (2004). doi:10.1021/ma049076w

    Article  Google Scholar 

  7. Yan, X., Perry, S.S., Spencer, N.D., Pasche, S., DePaul, S.M., Textor, M., et al.: Reduction of friction at oxide interfaces upon polymer adsorption from aqueous solutions. Langmuir 20, 423–428 (2004). doi:10.1021/la035785b

    Article  Google Scholar 

  8. Muller, M.T., Yan, X., Lee, S., Perry, S.S., Spencer, N.D.: Preferential solvation and its effect on the lubrication properties of a surface-bound, brushlike copolymer. Macromolecules 38, 3861–3866 (2005). doi:10.1021/ma047468x

    Article  Google Scholar 

  9. Muller, M.T., Yan, X., Lee, S., Perry, S.S., Spencer, N.D.: Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38, 5706–5713 (2005). doi:10.1021/ma0501545

    Article  Google Scholar 

  10. Lee, S., Muller, M., Heeb, R., Zurcher, S., Tosatti, S., Heinrich, M., et al.: Self-healing behavior of a polyelectrolyte-based lubricant additive for aqueous lubrication of oxide materials. Tribol. Lett. 24, 217–223 (2006). doi:10.1007/s11249-006-9121-9

    Article  Google Scholar 

  11. Lee, S., Spencer, N.D.: Aqueous lubrication of polymers: influence of surface modification. Tribol. Int. 38, 922–930 (2006). doi:10.1016/j.triboint.2005.07.017

    Article  Google Scholar 

  12. Drobek, T., Spencer, N. D.: Nanotribology of surface-grafted peg layers in an aqueous environment. Langmuir 24, 1484–1488 (2008)

    Article  CAS  Google Scholar 

  13. Lee, S., Spencer, N.D.: Poly(l-lysine)-graft-poly(ethylene glycol): a versatile aqueous lubricant additive for tribosystems involving thermoplastics. Lubrication Sci. 20, 21–34 (2008)

    Article  CAS  Google Scholar 

  14. Lee, S., Spencer, N.D.: Achieving ultralow friction by aqueous, brush-assisted lubrication. In: Erdemir A., Martin J.-M., (eds) Superlubricity. Elsevier Science (2007)

  15. Lee, S., Spencer, N.D.: Materials science: sweet, hairy, soft, and slippery. Science 319, 575–576 (2008). doi:10.1126/science.1153273

    Article  CAS  Google Scholar 

  16. Elbert, D.L., Hubbell, J.A.: Self-assembly and steric stabilization at heterogeneous, biological surfaces using adsorbing block copolymers. Chem. Biol. 5, 177–183 (1998). doi:10.1016/S1074-5521(98)90062-X

    Article  CAS  Google Scholar 

  17. Kenausis, G.L., Voros, J., Elbert, D.L., Huang, N., Hofer, R., Ruiz-Taylor, L., et al.: Poly(l-lysine)-g-Poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J. Phys. Chem B 104, 3298–3309 (2000). doi:10.1021/jp993359m

    Article  Google Scholar 

  18. Heuberger, M.: The extended surface forces apparatus. Part I. Fast spectral correlation interferometry. Rev. Sci. Instrum. 72, 1700–1707 (2001). doi:10.1063/1.1347978

    Article  Google Scholar 

  19. Huang, N.P., Michel, R., Voros, J., Textor, M., Hofer, R., Rossi, A., et al.: Poly(l-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 17, 489–498 (2001). doi:10.1021/la000736±

    Article  Google Scholar 

  20. Huang, N.P., Csucs, G., Emoto, K., Nagasaki, Y., Kataoka, K., Textor, M., et al.: Covalent attachment of novel poly(ethylene glycol)-poly(dl-lactic acid) copolymeric micelles to TiO2 surfaces. Langmuir 18, 252–258 (2002). doi:10.1021/la0109563

    Article  Google Scholar 

  21. Huang, N.P., Voros, J., De Paul, S.M., Textor, M., Spencer, N.D.: Biotin-derivatized poly(l-lysine)-g-poly(ethylene glycol): a novel polymeric interface for bioaffinity sensing. Langmuir 18, 220–230 (2002). doi:10.1021/la010913m

    Article  Google Scholar 

  22. Michel, R., Reviakine, I., Sutherland, D., Fokas, C., Csucs, G., Danuser, G., et al.: A novel approach to produce biologically relevant chemical patterns at the nanometer scale: selective molecular assembly patterning combined with colloidal lithography. Langmuir 18, 8580–8586 (2002). doi:10.1021/la0258244

    Article  Google Scholar 

  23. Muller, M., Voros, J., Csucs, G., Walter, E., Danuser, G., Merkle, H.P., et al.: Surface modification of PLGA microspheres. J. Biomed. Mater. Res A 66A, 55–61 (2003). doi:10.1002/jbm.a.10502

    Article  Google Scholar 

  24. Pasche, S., De Paul, S.M., Voros, J., Spencer, N.D., Textor, M.: Poly(l-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium oxide surfaces: a quantitative study of the influence of polymer interfacial architecture on resistance to protein adsorption by ToF-SIMS and in situ OWLS. Langmuir 19, 9216–9225 (2003). doi:10.1021/la034111y

    Article  Google Scholar 

  25. Tosatti, S., De Paul, S.M., Askendal, A., VandeVondele, S., Hubbell, J.A., Tengvall, P.: Peptide functionalized poly(l-lysine)-g-poly(ethylene glycol) on titanium: resistance to protein adsorption in full heparinized human blood plasma. Biomaterials 24, 4949–4958 (2003). doi:10.1016/S0142-9612(03)00420-4

    Article  CAS  Google Scholar 

  26. VandeVondele, S., Voros, J., Hubbell, J.A.: RGD-Grafted poly-l-lysine-graft-(polyethylene glycol) copolymers block non-specific protein adsorption while promoting cell adhesion. Biotechnol. Bioeng. 82, 784–790 (2003). doi:10.1002/bit.10625

    Article  Google Scholar 

  27. Heuberger, M., Drobek, T., Voros, J.: About the role of water in surface-grafted poly(ethylene glycol) layers. Langmuir 20, 9445–9448 (2004). doi:10.1021/la048384k

    Article  CAS  Google Scholar 

  28. Wagner, M.S., Pasche, S., Castner, D.G., Textor, M.: Characterization of poly(l-lysine)-graft-poly(ethylene glycol) assembled monolayers on niobium pentoxide substrates using time-of-flight secondary ion mass spectrometry and multivariate analysis. Anal. Chem. 76, 1483–1492 (2004). doi:10.1021/ac034873y

    Article  CAS  Google Scholar 

  29. De Paul, S.M., Falconnet, D., Pasche, S., Textor, M., Abel, A.P., Kauffmann, E., et al.: Tuned graft copolymers as controlled coatings for DNA microarrays. Anal. Chem. 77, 5831–5838 (2005). doi:10.1021/ac0504666

    Article  Google Scholar 

  30. Drobek, T., Spencer, N.D., Heuberger, M., Compressing, P.E.G.: Brushes. Macromolecules 38, 5254–5259 (2005). doi:10.1021/ma0504217

    Article  Google Scholar 

  31. Feuz, L., Leermakers, F.A.M., Textor, M., Borisov, O.: Bending rigidity and induced persistence length of molecular bottle brushes: a self-consistent-field theory. Macromolecules 38, 8891–8901 (2005). doi:10.1021/ma050871z

    Article  Google Scholar 

  32. Heuberger, M., Drobek, T., Spencer, N.D.: Interaction forces and morphology of a protein-resistant poly(ethylene glycol) layer. Biophys. J. 88, 495–504 (2005). doi:10.1529/biophysj.104.045443

    Article  CAS  Google Scholar 

  33. Lee, S., Voros, J.: An aqueous-based surface modification of poly(dimethylsiloxane) with poly(ethylene glycol) to prevent biofouling. Langmuir 21, 11957–11962 (2005). doi:10.1021/la051932p

    Article  Google Scholar 

  34. Pasche, S., Textor, M., Meagher, L., Spencer, N.D., Griesser, H.J.: Relationship between interfacial forces measured by colloid-probe atomic force microscopy and protein resistance of poly(ethylene glycol)-grafted poly(l-lysine) adlayers on niobia surfaces. Langmuir 21, 6508–6520 (2005). doi:10.1021/la050386x

    Article  Google Scholar 

  35. Blattler, T.M., Pasche, S., Textor, M., Griesser, H.J.: High salt stability and protein resistance of poly(l-lysine)-g-poly(ethylene glycol) copolymers covalently immobilized via aldehyde plasma polymer interlayers on inorganic and polymeric substrates. Langmuir 22, 5760–5769 (2006). doi:10.1021/la0602766

    Article  Google Scholar 

  36. Morgenthaler, S., Zink, C., Stadler, B., Voros, J., Lee, S., Spencer, N.D., et al.: Poly(l-lysine)-grafted-poly(ethylene glycol)-based surface-chemical gradients. Preparation, characterization, and first applications. Biointerphases 1, 156–165 (2006). doi:10.1116/1.2431704

    Article  Google Scholar 

  37. Wattendorf, U., Koch, M.C., Walter, E., Voros, J., Textor, M., Merkle, H.P.: Phagocytosis of poly(l-lysine)-graft-poly(ethylene glycol) coated microspheres by antigen presenting cells: impact of grafting ratio and poly(ethylene glycol) chain length on cellular recognition. Biointerphases 1, 123–133 (2006). doi:10.1116/1.2409645

    Article  Google Scholar 

  38. Feuz, L., Strunz, P., Geue, T., Textor, M., Borisov, O.: Conformation of poly(l-lysine)-graft-poly(ethylene glycol) molecular brushes in aqueous solution studied by small-angle neutron scattering. Eur. Phys. J. E. Soft Matter 23, 237–245 (2007)

    Article  CAS  Google Scholar 

  39. Tleugabulova, D., Czardybon, W., Brennan, J.D.: Time-resolved fluorescence anisotropy in assessing side-chain and segmental motions in polyamines entrapped in sol-gel derived silica. J. Phys. Chem. B 108, 10692–10699 (2004). doi:10.1021/jp0491109

    Article  Google Scholar 

  40. Sawhney, A.S., Hubbell, J.A.: Poly(ethylene oxide)-graft-poly(l-lysine) copolymers to enhance the biocompatibility of poly(l-lysine)-alginate microcapsule membranes. Biomaterials 13, 863–870 (1992). doi:10.1016/0142-9612(92)90180-V

    Article  CAS  Google Scholar 

  41. Voros, J., Ramsden, J.J., Csucs, G., Szendro, I., De Paul, S.M., Textor, M., et al.: Optical grating coupler biosensors. Biomaterials 23, 3699–3710 (2002). doi:10.1016/S0142-9612(02)00103-5

    Article  CAS  Google Scholar 

  42. Kawaguchi, S., Imai, G., Suzuki, J., Miyahara, A., Kitano, T., Ito, K.: Aqueous solution properties of oligo- and poly(ethylene oxide) by static light scattering and intrinsic viscosity. Polymer (Guildf) 38, 2885–2891 (1997). doi:10.1016/S0032-3861(96)00859-2

    Article  Google Scholar 

  43. Alexander, S.: Adsorption of chain molecules with a polar head a-scaling description. J. Phys. 38, 983–987 (1977)

    CAS  Google Scholar 

  44. de Gennes, P.G.: Polymers at an interface; a simplified view. Adv. Colloid Interface Sci. 27, 189–209 (1987). doi:10.1016/0001-8686(87)85003-0

    Article  Google Scholar 

  45. Szleifer, I., Carignano, M.A.: Tethered polymer layers: phase transitions and reduction of protein adsorption. Macromol. Rapid Commun. 21, 423–448 (2000). doi :10.1002/(SICI)1521-3927(20000501)21:8<423::AID-MARC423>3.0.CO;2-J

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Research Commission of the ETH Zurich for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicholas D. Spencer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hartung, W., Drobek, T., Lee, S. et al. The Influence of Anchoring-Group Structure on the Lubricating Properties of Brush-Forming Graft Copolymers in an Aqueous Medium. Tribol Lett 31, 119–128 (2008). https://doi.org/10.1007/s11249-008-9344-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11249-008-9344-z

Keywords

Navigation