Skip to main content

Advertisement

Log in

Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Non-lepidopteran pests are exposed to, and may be influenced by, Bt toxins when feeding on Bt maize that express insecticidal Cry proteins derived from Bacillus thuringiensis (Bt). In order to assess the potential effects of transgenic cry1Ie maize on non-lepidopteran pest species and ecological communities, a 2-year field study was conducted to compare the non-lepidopteran pest abundance, diversity and community composition between transgenic cry1Ie maize (Event IE09S034, Bt maize) and its near isoline (Zong 31, non-Bt maize) by whole plant inspections. Results showed that Bt maize had no effects on non-lepidopteran pest abundance and diversity (Shannon–Wiener diversity index, Simpson’s diversity index, species richness, and Pielou’s index). There was a significant effect of year and sampling time on those indices analyzed. Redundancy analysis indicated maize type, sampling time and year totally explained 20.43 % of the variance in the non-lepidopteran pest community composition, but no association was presented between maize type (Bt maize and non-Bt maize) and the variance. Nonmetric multidimensional scaling analysis showed that sampling time and year, rather than maize type had close relationship with the non-lepidopteran pest community composition. These results corroborated the hypothesis that, at least in the short-term, the transgenic cry1Ie maize had negligible effects on the non-lepidopteran pest abundance, diversity and community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afidchao MM, Musters CJM, de Snoo GR (2013) Asian corn borer (ACB) and non-ACB pests in GM corn (Zea mays L.) in the Philippines. Pest Manag Sci 69:792–801

    Article  CAS  PubMed  Google Scholar 

  • Balog A, Kiss J, Szekeres D, Szénási Á, Markó V (2010) Rove beetle (Coleoptera: Staphylinidae) communities in transgenic Bt (MON810) and near isogenic maize. Crop Prot 29:567–571

    Article  Google Scholar 

  • Bernal CC, Aguda RM, Cohen MB (2002) Effect of rice lines transformed with Bacillus thuringiensis toxin genes on the brown planthopper and its predator Cyrtorhinus lividipennis. Entomol Exp Appl 102:21–28

    Article  Google Scholar 

  • Bourguet D et al (2002) Ostrinia nubilalis parasitism and the field abundance of non-target insects in transgenic Bacillus thuringiensis corn (Zea mays). Environ Biosaf Res 1:49–60

    Article  Google Scholar 

  • Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin. Ecol Monogr 27:325–349

    Article  Google Scholar 

  • Burgio G, Lanzoni A, Accinelli G, Dinelli G, Bonetti A, Marotti I, Ramilli F (2007) Evaluation of Bt-toxin uptake by the non-target herbivore, Myzus persicae (Hemiptera: Aphididae), feeding on transgenic oilseed rape. Bull Entomol Res 97:211–215

    Article  CAS  PubMed  Google Scholar 

  • Chen M et al (2007) Impacts of transgenic cry1Ab rice on non-target planthoppers and their main predator Cyrtorhinus lividipennis (Hemiptera: Miridae)—a case study of the compatibility of Bt rice with biological control. Biol Control 42:242–250

    Article  Google Scholar 

  • Chen M, Ye GY, Liu ZC, Fang Q, Hu C, Peng YF, Shelton AM (2009) Analysis of Cry1Ab toxin bioaccumulation in a food chain of Bt rice, an herbivore and a predator. Ecotoxicology 18:230–238

    Article  CAS  PubMed  Google Scholar 

  • Chen Y et al (2012) Bt rice expressing Cry1Ab does not stimulate an outbreak of its non-target herbivore, Nilaparvata lugens. Transgenic Res 21:279–291

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18:117–143

    Article  Google Scholar 

  • Clergue B, Amiaud B, Pervanchon F, Lasserre-Joulin F, Plantureux S (2005) Biodiversity: function and assessment in agricultural areas. A review. Agron Sustain Dev 25:1–15

    Article  Google Scholar 

  • Crawley MJ (1999) Bollworms, genes and ecologists. Nature 400:501–502

    Article  CAS  PubMed  Google Scholar 

  • de la Poza M et al (2005) Impact of farm-scale Bt maize on abundance of predatory arthropods in Spain. Crop Prot 24:677–684

    Article  CAS  Google Scholar 

  • Devos Y, De Schrijver A, De Clercq P, Kiss J, Romeis J (2012) Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Res 21:1191–1214

    Article  CAS  PubMed  Google Scholar 

  • Digby PGN, Kempton RA (1987) Multivariate analysis of ecological communities. Chapman and Hall, London

    Book  Google Scholar 

  • Duan JJ et al (2010) Extrapolating non-target risk of Bt crops from laboratory to field. Biol Lett 6:74–77

    Article  PubMed  Google Scholar 

  • Dutton A, Klein H, Romeis J, Bigler F (2002) Uptake of Bt—toxin by herbivores feeding on transgenic maize and consequences for the predator Chrysoperla carnea. Ecol Entomol 27:441–447

    Article  Google Scholar 

  • Faith D, Minchin P, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68

    Article  Google Scholar 

  • Faria CA, Wäckers FL, Pritchard J, Barrett DA, Turlings TC (2007) High susceptibility of Bt maize to aphids enhances the performance of parasitoids of lepidopteran pests. Plos One 2:e600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foulquier A, Volat B, Neyra M, Bornette G, Montuelle B (2013) Long-term impact of hydrological regime on structure and functions of microbial communities in riverine wetland sediments. FEMS Microbiol Ecol 85:211–226

    Article  CAS  PubMed  Google Scholar 

  • Groot AT, Dicke M (2002) Insect-resistant transgenic plants in a multi-trophic context. Plant J 31:387–406

    Article  CAS  PubMed  Google Scholar 

  • Guo YY, Feng YJ, Ge Y, Tetreau G, Chen XW, Dong XH, Shi WP (2014) The cultivation of Bt corn producing Cry1Ac toxins does not adversely affect non-target arthropods. Plos One 9:e114228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Habuštová O, Doležal P, Spitzer L, Svobodová Z, Hussein H, Sehnal F (2014) Impact of Cry1Ab toxin expression on the non-target insects dwelling on maize plants. J Appl Entomol 138:164–172

    Article  CAS  Google Scholar 

  • Han HL, Li GT, Wang ZY, Zhang J, He KL (2009) Cross-resistance of Cry1Ac-selected Asian corn borer to other Bt toxins. Acta Phytophylacica Sin 36:329–334

    CAS  Google Scholar 

  • He KL, Wang ZY, Zhou DR, Wen LP, Song YY, Yao Z (2003) Evaluation of transgenic Bt corn for resistance to the Asian corn borer (Lepidoptera: Pyralidae). J Econ Entomol 96:935–940

    Article  CAS  PubMed  Google Scholar 

  • He MX, He KL, Wang ZY, Wang XY, Li Q (2013) Selection for Cry1Ie resistance and cross-resistance of the selected strain to other Cry toxins in the Asian corn borer, Ostrinia furnacalis (Lepidoptera: Crambidae). Acta Entomol Sin 56:1135–1142

    Google Scholar 

  • Houlahan JE et al (2006) The effects of adjacent land use on wetland species richness and community composition. Wetlands 26:79–96

    Article  Google Scholar 

  • Huang J, Hu R, Rozelle S, Pray C (2005) Insect-resistant GM rice in farmers’ fields: assessing productivity and health effects in China. Science 308:688–690

    Article  CAS  PubMed  Google Scholar 

  • James C (2014) Global status of commercialized biotech/GM crops: 2014. ISAAA Brief. 49. ISAAA, Ithaca

  • Kruskal JB (1964) Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29:1–26

    Article  Google Scholar 

  • Kruskal J, Whish M (1978) Multidimensional scaling. Sage, Beverly Hills

    Book  Google Scholar 

  • Li X, Liu B (2013) A 2-year field study shows little evidence that the long-term planting of transgenic insect-resistant cotton affects the community structure of soil nematodes. Plos One 8:e61670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Romeis J (2010) Bt maize expressing Cry3Bb1 does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum. Biol Control 53:337–344

    Article  CAS  Google Scholar 

  • Li LL, Wang ZY, He KL, Bai SX, Hua L (2007) Effects of transgenic corn expressing Bacillus thuringiensis CrylAb toxin on population increase of Rhopalosiphum maidis Fitch. J Appl Ecol 18:1077–1080

    CAS  Google Scholar 

  • Li Y, Meissle M, Romeis J (2008) Consumption of Bt maize pollen expressing Cry1Ab or Cry3Bb1 does not harm adult green lacewings, Chrysoperla carnea (Neuroptera: Chrysopidae). Plos One 3:e2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu XD, Zhai BP, Zhang XX, Zong JM (2005) Impact of transgenic cotton plants on a non-target pest, Aphis gossypii glover. Ecol Entomol 30:307–315

    Article  Google Scholar 

  • Lu YH et al (2010) Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science 328:1151–1154

    Article  CAS  PubMed  Google Scholar 

  • Lu ZB et al (2014) No direct effects of two transgenic Bt rice lines, T1C-19 and T2A-1, on the arthropod communities. Environ Entomol 43:1453–1463

    Article  CAS  PubMed  Google Scholar 

  • Lundgren JG, Gassmann AJ, Bernal J, Duan JJ, Ruberson J (2009) Ecological compatibility of GM crops and biological control. Crop Prot 28:1017–1030

    Article  Google Scholar 

  • Luo TH, Yu XD, Zhou HZ (2013) Effects of reforestation practices on staphylinid beetles (Coleoptera: Staphylinidae) in southwestern China forests. Environ Entomol 42:7–16

    Article  PubMed  Google Scholar 

  • Meyer C, Gilbert D, Gillet F, Moskura M, Franchi M, Bernard N (2012) Using “bryophytes and their associated testate amoeba” microsystems as indicators of atmospheric pollution. Ecol Indic 13:144–151

    Article  CAS  Google Scholar 

  • Nafus DM, Schreiner IH (1991) Review of the biology and control of the Asian corn borer, Ostrinia furnacalis (Lep: Pyralidae). Trop Pest Manag 37:41–56

    Article  Google Scholar 

  • Naranjo SE (2009) Impacts of Bt crops on non-target invertebrates and insecticide use patterns. CAB Rev Perspect Agric Vet Sci Nutr Nat Resour 4:1–11

    Google Scholar 

  • Nielsen UN et al (2010) The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. J Biogeogr 37:1317–1328

    Article  Google Scholar 

  • Oksanen J et al Vegan: community ecology package R package version 2.2-1. http://vegan.r-forge.r-project.org/. Accessed: 20th Jan 2015

  • Palmer MW (1993) Putting things in even better order: The advantages of canonical correspondence analysis. Ecology 74:2215–2230

    Article  Google Scholar 

  • Pielou EC (1966) The measurement of diversity in different types of biological collections. J Theor Biol 13:131–144

    Article  Google Scholar 

  • Piepho HP, Büchse A, Richter C (2004) A mixed modelling approach for randomized experiments with repeated measures. J Agron Crop Sci 190:230–247

    Article  Google Scholar 

  • Pons X, Lumbierres B, Lopez C, Albajes R (2005) Abundance of non-target herbivores in transgenic Bt-maize: a farm scale study. Eurep J Entomol 102:73–79

    Article  CAS  Google Scholar 

  • Prasifka JR, Hellmich RL, Dively GP, Lewis LC (2005) Assessing the effects of pest management on nontarget arthropods: the influence of plot size and isolation. Environ Entomol 34:1181–1192

    Article  Google Scholar 

  • Priestley A, Brownbridge M (2009) Field trials to evaluate effects of Bt-transgenic silage corn expressing the Cry1Ab insecticidal toxin on non-target soil arthropods in northern New England, USA. Transgenic Res 18:425–443

    Article  CAS  PubMed  Google Scholar 

  • Ramette A (2007) Multivariate analyses in microbial ecology. FEMS Microbiol Ecol 62:142–160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao CR (1964) The use and interpretation of principal component analysis in applied research. Sankhyā Indian J Stat Ser A, pp 329–358. Indian Statistical Institute

  • Rauschen S et al (2009) Impact of Bt-corn MON88017 in comparison to three conventional lines on Trigonotylus caelestialium (Kirkaldy) (Heteroptera: Miridae) field densities. Transgenic Res 18:203–214

    Article  CAS  PubMed  Google Scholar 

  • Rauschen S, Schultheis E, Hunfeld H, Schaarschmidt F, Schuphan I, Eber S (2010) Diabrotica-resistant Bt-maize DKc5143 event MON88017 has no impact on the field densities of the leafhopper Zyginidia scutellaris. Environ Biosaf Res 9:87–99

    Article  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna. http://www.r-project.org/. Accessed: 10th Dec 2015

  • Romeis J et al (2008) Assessment of risk of insect-resistant transgenic crops to nontarget arthropods. Nat Biotechnol 26:203–208

    Article  CAS  PubMed  Google Scholar 

  • Romeis J et al (2011) Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Res 20:1–22

    Article  CAS  PubMed  Google Scholar 

  • Romeis J, Raybould A, Bigler F, Candolfi MP, Hellmich RL, Huesing JE, Shelton AM (2013) Deriving criteria to select arthropod species for laboratory tests to assess the ecological risks from cultivating arthropod-resistant genetically engineered crops. Chemosphere 90:901–909

    Article  CAS  PubMed  Google Scholar 

  • Romeis J et al (2014) Potential use of an arthropod database to support the non-target risk assessment and monitoring of transgenic plants. Transgenic Res 23:995–1013

    Article  CAS  PubMed  Google Scholar 

  • SAS Institute (2009) Base SAS® 9.2 procedures guide. SAS Institute, Cary

  • Shannon CE, Weaver W (1949) The mathematical theory of communication. University of Illinois Press, Urbana

    Google Scholar 

  • Shepard RN (1962) The analysis of proximities: multidimensional scaling with an unknown distance function. Psychometrika 27:125–139

    Article  Google Scholar 

  • Simpson EH (1949) Measurement of diversit. Nature 163:688

    Article  Google Scholar 

  • Slade NA, Blair SM (2000) An empirical test of using counts of individuals captured as indices of population size. J Mammal 81:1035–1045

    Article  Google Scholar 

  • Song FP et al (2003) Identification of cry1I-Type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-Type Gene. Appl Environ Microb 69:5207–5211

    Article  CAS  Google Scholar 

  • Svobodová Z, Habuštová O, Sehnal F, Holec M, Hussein HM (2013) Epigeic spiders are not affected by the genetically modified maize MON 88017. J Appl Entomol 137:56–67

    Article  Google Scholar 

  • Svobodová Z, Skoková Habuštová O, Hutchison WD, Hussein HM, Sehnal F (2015) Risk assessment of genetically engineered maize resistant to Diabrotica spp.: influence on above-ground arthropods in the Czech Republic. Plos One 10:e0130656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svobodová Z, Skoková Habuštová O, Boháč J, Sehnal F (2016) Functional diversity of staphylinid beetles (Coleoptera: Staphylinidae) in maize fields: testing the possible effect of genetically modified, insect resistant maize. Bull Entomol Res 106:1–14

    Article  CAS  Google Scholar 

  • Szenasi A, Palinkas Z, Zalai M, Schmitz OJ, Balog A (2014) Short-term effects of different genetically modified maize varieties on arthropod food web properties: an experimental field assessment. Sci Rep. doi:10.1038/srep05315

    PubMed  PubMed Central  Google Scholar 

  • Ter Braak CJ (1986) Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179

    Article  Google Scholar 

  • Virla EG, Casuso M, Frias EA (2010) A preliminary study on the effects of a transgenic corn event on the non-target pest Dalbulus maidis (Hemiptera: Cicadellidae). Crop Prot 29:635–638

    Article  Google Scholar 

  • Wang ZY et al (2005) Effects of transgenic corn hybrids expressing Bacillus thuringiensis Cry1Ab toxin on survival and growth of the beet armyworm, Spodoptera exigua (Hübner). Acta Entomol Sin 48:214–220

    Google Scholar 

  • Wang YM, Zhang GA, Du JP, Liu B, Wang MC (2010) Influence of transgenic hybrid rice expressing a fused gene derived from cry1Ab and cry1Ac on primary insect pests and rice yield. Crop Prot 29:128–133

    Article  CAS  Google Scholar 

  • Wells GF, Park HD, Eggleston B, Francis CA, Criddle CS (2011) Fine-scale bacterial community dynamics and the taxa–time relationship within a full-scale activated sludge bioreactor. Water Res 45:5476–5488

    Article  CAS  PubMed  Google Scholar 

  • Wimp GW, Martinsen GD, Floate KD, Bangert RK, Whitham TG (2005) Plant genetic determinants of arthropod community structure and diversity. Evolution 59:61–69

    Article  PubMed  Google Scholar 

  • Wolt J et al (2010) Problem formulation in the environmental risk assessment for genetically modified plants. Transgenic Res 19:425–436

    Article  CAS  PubMed  Google Scholar 

  • Wu K, Li W, Feng H, Guo Y (2002) Seasonal abundance of the mirids, Lygus lucorum and Adelphocoris spp. (Hemiptera: Miridae) on Bt cotton in northern China. Crop Prot 21:997–1002

    Article  Google Scholar 

  • Xu L, Ferry N, Wang Z, Zhang J, Edwards MG, Gatehouse AMR, He K (2013) A proteomic approach to study the mechanism of tolerance to Bt toxins in Ostrinia furnacalis larvae selected for resistance to Cry1Ab. Transgenic Res 22:1155–1166

    Article  CAS  PubMed  Google Scholar 

  • Yang ZJ, Lang ZH, Zhang J, Song FP, He KL, Huang DF (2012) Studies on insect-resistant transgenic maize (Zea mays L.) harboring Bt cry1Ah and cry1Ie genes. J Agric Sci Technol (Beijing) 14:39–45

    Google Scholar 

  • Zeilinger AR, Olson DM, Andow DA (2015) Competitive release and outbreaks of non-target pests associated with transgenic Bt cotton. Ecol Appl. doi:10.1890/15-1314.1

    Google Scholar 

  • Zhang B, Chen M, Zhang X, Luan H, Tian Y, Su X (2011) Expression of Bt-Cry3A in transgenic Populus alba × P. glandulosa and its effects on target and non-target herbivores and the arthropod community. Transgenic Res 20:523–532

    Article  CAS  PubMed  Google Scholar 

  • Zhang YW et al (2013) Overexpression of a novel cry1Ie gene confers resistance to Cry1Ac-resistant cotton bollworm in transgenic lines of maize. Plant Cell Tiss Org 115:151–158

    Article  CAS  Google Scholar 

  • Zhang TT, He MX, Gatehouse AMR, Wang ZY, Edwards MG, Li Q, He KL (2014) Inheritance patterns, dominance and cross-resistance of Cry1Ab-and Cry1Ac-selected Ostrinia furnacalis (Guenée). Toxins 6:2694–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurbrügg C, Nentwig W (2009) Ingestion and excretion of two transgenic Bt corn varieties by slugs. Transgenic Res 18:215–225

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Xianghong Yu from Graduate School of Chinese Academy of Agricultural Sciences for the statistical analysis advice. This research was supported by the Genetically Modified Organisms Breeding Major Projects (2014ZX08011-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenying Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., He, K., Bai, S. et al. Effects of transgenic cry1Ie maize on non-lepidopteran pest abundance, diversity and community composition. Transgenic Res 25, 761–772 (2016). https://doi.org/10.1007/s11248-016-9968-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-016-9968-y

Keywords

Navigation