Skip to main content
Log in

A proteomic approach to study the mechanism of tolerance to Bt toxins in Ostrinia furnacalis larvae selected for resistance to Cry1Ab

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

A Cry1Ab-resistant population of Asian corn borer (ACB-AbR) exhibiting approximately 100 times greater resistance to activated Cry1Ab than a susceptible population (Ostrinia furnacalis; ACB-BtS), was previously shown to exhibit high levels of cross-resistance to Cry1Ah (131-fold), but no cross-resistance to Cry1Ie. It was suggested that the proposed mechanism of resistance was due to the alteration of specific receptors for Cry toxins in the midgut brush border membrane. In the present study a proteomic-based approach was used to identify proteins from brush border membrane vesicles (isolated from both resistant and susceptible Ostrinia furnacalis larvae) interacting with biotinylated Cry1Ab, Cry1Ah, and Cry1Ie. 2D-Electrophoresis in combination with ligand blots were employed and putative protein identities obtained using MALDI-ToF/ToF mass spectrometry. The V-type proton ATPase catalytic subunit A and heat shock 70 kDa proteins were identified as interacting with the Cry toxins tested in the ACB-AbR and ACB-BtS larvae. The biotinylated Cry toxins showed markedly stronger interactions with proteins in the resistant compared to the susceptible larvae, suggesting an up-regulation of the V-type proton ATPase catalytic subunit A and heat shock 70 kDa proteins in the resistant (ACB-AbR) larvae. Interestingly, Cry1Ie interactions with the V-type proton ATPase catalytic subunit A in the ACB-BtS larvae appeared to be absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Archer TL, Patrick C, Schuster G, Cronholm G, Bynum ED Jr, Morrison WP (2001) Ear and shank damage by corn borers and corn earworms to four events of Bacillus thuringiensis transgenic maize. Crop Prot 20(2):139–144

    Article  Google Scholar 

  • Arenas I, Bravo A, Soberón M, Gómez I (2010) Role of alkaline phosphatase from Manduca sexta in the mechanism of action of Bacillus thuringiensis Cry1Ab toxin. J Biol Chem 285:12497–12503

    Article  PubMed  CAS  Google Scholar 

  • Asea A (2007) Retraced: Hsp 72 release: mechanism and methodologies. Methods 43:194–198

    Article  PubMed  CAS  Google Scholar 

  • Bauer LS (1995) Resistance: a threat to the insecticidal crystal proteins of Bacillus thuringiensis. Fla Entomol 78(3):414–443

    Article  CAS  Google Scholar 

  • Bolin PC, Hutchison WD, Andow DA (1999) Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera: Crambidae). J Econ Entomol 92:1021–1030

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Bravo A, Gómez I, Conde J, Muñoz-Garay C, Sánchez J, Miranda R, Zhuang M, Gill SS, Soberón M (2004) Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochim Biophys Acta 1667(1):38–46

    Article  PubMed  CAS  Google Scholar 

  • Candas M, Loseva O, Oppert B, Kosaraju P, Bulla LA Jr (2003) Insect resistance to Bacillus thuringiensis: alterations in the Indianmeal moth larval gut proteome. Mol Cell Proteomics 2:19–28

    Article  PubMed  CAS  Google Scholar 

  • Chapman-Smith A, Cronan JE (1999) The enzymatic biotinylation of proteins: a post-translational modification of exceptional specificity. Trends Biochem Sci 24:359–363

    Article  PubMed  CAS  Google Scholar 

  • Chen LZ, Liang GM, Zhang J, Wu KM, Guo YY (2010) Proteomic analysis of novel Cry1Ac binding proteins in Helicoverpa armigera (Hübner). Arch Insect Biochem 73:61–73

    Article  CAS  Google Scholar 

  • Christeller JT, Markwick NP, Burgess EP, Malone LA (2010) The use of biotin-binding proteins for insect control. J Econ Entomol 103(2):497–508

    Article  PubMed  CAS  Google Scholar 

  • Coates BS, Sumerford DV, Hellmich RL, Lewis LC (2005) Sequence variation in the cadherin gene of Ostrinia nubilalis: a tool for field monitoring. Insect Biochem Mol Biol 35(2):129

    Article  PubMed  CAS  Google Scholar 

  • Crespo AL, Rodrigo-Simón A, Siqueira HA, Pereira EJ, Ferré J, Siegfried BD (2011) Cross-resistance and mechanism of resistance to Cry1Ab toxin from Bacillus thuringiensis in a field-derived strain of European corn borer, Ostrinia nubilalis. J Invertebr Pathol 107(3):185–192

    Article  PubMed  CAS  Google Scholar 

  • Ferré J, Van Rie J (2002) Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Annu Rev Entomol 47(1):501–533

    Google Scholar 

  • Ferry N, Mulligan EA, Majerus MEN, Gatehouse AMR (2007) Bitrophic and tritrophic effects of Bt Cry3A transgenic potato on beneficial, non-target, beetles. Transgenic Res 16:795–812

    Article  PubMed  CAS  Google Scholar 

  • Forgac M (1999) Structure and properties of the vacuolar H+-ATPases. J Biol Chem 274:12951–12954

    Article  PubMed  CAS  Google Scholar 

  • Gahan LJ, Gould F, Heckel DG (2001) Identification of a gene associated with Bt resistance in Heliothis virescens. Science 293:857–860

    Article  PubMed  CAS  Google Scholar 

  • Gill M, Ellar D (2002) Transgenic Drosophila reveals a functional in vivo receptor for the Bacillus thuringiensis toxin Cry1Ac1. Insect Mol Biol 11:619–625

    Article  PubMed  CAS  Google Scholar 

  • Gill SS, Cowles EA, Francis V (1995) Identification, isolation, and cloning of a Bacillus thuringiensis Cry1Ac toxin-binding protein from the midgut of the lepidopteran insect Heliothis virescens. J Biol Chem 270:27277–27282

    Article  PubMed  CAS  Google Scholar 

  • Gräf R, Harvey WR, Wieczorek H (1996) Purification and properties of a cytosolic V1-ATPase. J Biol Chem 271:20908–20913

    Article  PubMed  Google Scholar 

  • Griffitts JS, Huffman DL, Whitacre JL, Barrows BD, Marroquin LD, Müller R, Brown JR, Hennet T, Esko JD, Aroian RV (2003) Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J Biol Chem 278:45594–45602

    Article  PubMed  CAS  Google Scholar 

  • Hari NS, Jindal J, Malhi NS (2008) Resistance of Cry1Ab maize to spotted stemborer Chilo partellus (Lepidoptera: Crambidae) in India. Int J Trop Sci 27(3–4):223–228

    Google Scholar 

  • Harvey WR, Maddrell SHP, Telfer WH, Wieczorek H (1998) H+ V-ATPases energize animal plasma membranes for secretion and absorption of ions and fluids. Am Zool 38(3):426–441

    CAS  Google Scholar 

  • Khajuria C, Buschman LL, Chen MS, Siegfried BD, Zhu KY (2011) Identification of a novel aminopeptidase P-like Gene (OnAPP) possibly involved in Bt toxicity and resistance in a major corn pest (Ostrinia nubilalis). PLoS ONE 6(8):e23983

    Article  PubMed  CAS  Google Scholar 

  • Knight PJ, Crickmore N, Ellar DJ (1994) The receptor for Bacillus thuringiensis Cry1A(c)-endotoxin in the brush border membrane of the lepidopteran Manduca sexta is aminopeptidase N. Mol Microbiol 11:429–436

    Article  PubMed  CAS  Google Scholar 

  • Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis-endotoxins with different insect specificity. Biochim Biophys Acta 924:509–518

    Article  CAS  Google Scholar 

  • Krishnamoorthy M, Jurat-Fuentesa JL, McNall RJ, Andacht T, Adang MJ (2007) Identification of novel Cry1Ac binding proteins in midgut membranes from Heliothis virescens using proteomic analyses. Insect Biochem Mol Biol 37:189–201

    Article  PubMed  CAS  Google Scholar 

  • Luo K, Banks D, Adang MJ (1999) Toxicity, binding, and permeability analyses of four Bacillus thuringiensis Cry1 deltaendotoxins using brush border membrane vesicles of Spodoptera exigua and Spodoptera frugiperda. Appl Environ Microbiol 65:457–464

    PubMed  CAS  Google Scholar 

  • Maio AD (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11:1–12

    Article  PubMed  Google Scholar 

  • Mathew A, Morimoto RI (1998) Role of the heat shock response in the life and death of proteins. Ann N Y Acad Sci 851:99–111

    Article  PubMed  CAS  Google Scholar 

  • McGaughey WH, Johnson DE (1992) Indianmeal moth (Lepidoptera: Pyralidae) resistance to different strains and mixtures of Bacillus thuringiensis. J Econ Entomol 85:1594–1600

    Google Scholar 

  • McNall RJ, Adang MJ (2003) Identification of novel Bacillus thuringiensis Cry1Ac binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochem Mol Biol 33:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Nagamatsu Y, Toda S, Koike T, Miyoshi Y, Shigematsu S, Kogure M (1998a) Cloning, sequencing, and expression of the Bombyx mori receptor for Bacillus thuringiensis insecticidal Cry1A(a) toxin. Biosci Biotechnol Biochem 62:727–734

    Article  PubMed  CAS  Google Scholar 

  • Nagamatsu Y, Toda S, Yamaguchi F, Ogo M, Kogure M, Nakamura M, Shibata Y, Katsumoto T (1998b) Identification of Bombyx mori midgut receptor for Bacillus thuringiensis insecticidal Cry1A(a) toxin. Biosci Biotechnol Biochem 62:718–726

    Article  PubMed  CAS  Google Scholar 

  • Niederstätter H, Pelster B (2000) Expression of two vacuolar-type ATPase B subunit isoforms in swimbladder gas gland cells of the European eel: nucleotide sequences and deduced amino acid sequences. Biochim Biophys Acta 1491(1–3):133–142

    PubMed  Google Scholar 

  • Peng DH, Xu XH, Ye WX, Yu ZN, Sun M (2010) Helicoverpa armigera cadherin fragment enhances Cry1Ac insecticidal activity by facilitating toxin-oligomer formation. Appl Microbiol Biotechnol 85:1033–1040

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal R, Sivakumar S, Agrawal N, Malhotra P, Bhatnagar RK (2002) Silencing of midgut Aminopeptidase N of Spodoptera litura by double-stranded RNA establishes its role as Bacillus thuringiensis toxin receptor. J Biol Chem 277:46849–46851

    Article  PubMed  CAS  Google Scholar 

  • Rajagopal R, Agrawal N, Selvapandiyan A, Sivakumar S, Ahmad S, Bhatnagar RK (2003) Recombinantly expressed isozymic aminopeptidases from Helicoverpa armigera midgut display differential interaction with closely related Cry proteins. Biochem J 370:971–978

    Article  PubMed  CAS  Google Scholar 

  • Sanders BM (1993) Stress proteins in aquatic organisms: an environmental perspective. Crit Rev Toxicol 23:49–75

    Article  PubMed  CAS  Google Scholar 

  • Sangadala S, Walters FS, English LH, Adang MJ (1994) A mixture of Manduca sexta aminopeptidase and phosphatase enhances Bacillus thuringiensis insecticidal Cry1A(c) toxin binding and 86Rb-K efflux in vitro. J Biol Chem 269(13):10088–10092

    PubMed  CAS  Google Scholar 

  • Santoni V, Molloy M, Rabilloud T (2000) Membrane proteins and proteomics: Un amour impossible? Electrophoresis 21:1054–1070

    Article  PubMed  CAS  Google Scholar 

  • Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59:55–63

    Article  PubMed  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Shelton AM, Zhao JZ, Roush RT (2002) Economic, ecological, food safety, and social consequences of the deployment of Bt transgenic plants. Annu Rev Entomol 47:845–881

    Article  PubMed  CAS  Google Scholar 

  • Soberón M, Pardo-López L, López I, Gómez I, Tabashnik BE, Bravo A (2007) Engineering modified Bt toxins to counter insect resistance. Science 318:1640–1642

    Article  PubMed  Google Scholar 

  • Song YY, Zhou DR, He KL (1999) Studies on mass rearing of Asian corn borer: development of a satisfactory non-agar semi-artificial diet and its use. J Plant Prot 26:324–328

    Google Scholar 

  • Song F, Zhang J, Gu A, Wu Y, Han L, He K, Chen Z, Yao J, Hu Y, Li G, Huang D (2003) Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. Appl Environ Microb 69:5207–5211

    Article  CAS  Google Scholar 

  • Sumner JP, Dow JAT, Earley FGP, Klein U, Jäger D, Wieczorek H (1995) Regulation of plasma membrane V-ATPase activity by dissociation of peripheral subunits. J Biol Chem 270:5649–5653

    Article  PubMed  CAS  Google Scholar 

  • Sun-Wada GH, Wada Y, Futai M (2004) Diverse and essential roles of mammalian vacuolar-type proton pump ATPase: toward the physiological understanding of inside acidic compartments. Biochim Biophys Acta 1658:106–114

    Article  PubMed  CAS  Google Scholar 

  • Tabashnik BE (1994) Evolution of resistance to Bacillus thuringiensis. Annu Rev Entomol 39:47–79

    Article  Google Scholar 

  • Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1(1):23–28

    Article  PubMed  CAS  Google Scholar 

  • Vadlamudi RK, Weber E, Ji I, Ji TH, Bulla LA Jr (1995) Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem 270:5490–5494

    Article  PubMed  CAS  Google Scholar 

  • Wang ZY, Wu Y, He KL, Bai SX (2007) Effects of transgenic Bt maize pollen on longevity and fecundity of Trichogramma ostriniae in laboratory conditions. B Insectol 60(1):49–55

    Google Scholar 

  • Wolfersberger MG (1984) Enzymology of plasma membranes of insect intestinal cells. Amer Zool 24(1):187–197

    CAS  Google Scholar 

  • Wolfersberger M, Leuthy P, Maurer A, Parenti P, Sacchi FV, Giordana B, Hanozet GM (1987) Preparation and partial characterization of amino acid transporting brush border membrane vesicles from the larval midgut of the cabbage butterfly (Pieris brassicase). Comp Biochem Phys 86A:301–308

    CAS  Google Scholar 

  • Xu L, Wang Z, Zhang J, He K, Ferry N, Gatehouse AMR (2010) Cross-resistance of Cry1Ab-selected Asian corn borer to other Cry toxins. J Appl Entomol 134:429–438

    Article  CAS  Google Scholar 

  • Xue J, Liang GM, Crickmore N, Li HT, He KL, Song FP, Feng X, Huang DF, Zhang J (2008) Cloning and characterization of a novel Cry1A toxin from Bacillus thuringiensis with high toxicity to the Asian corn borer and other lepidopteran insects. FEMS Microbiol Lett 280:95–101

    Article  PubMed  CAS  Google Scholar 

  • You TH, Lee MK, Jenkins JL, Alzate O, Dean DH (2008) Blocking binding of Bacillus thuringiensis Cry1Aa to Bombyx mori cadherin receptor results in only a minor reduction of toxicity. BMC Biochem 9:3

    Article  PubMed  Google Scholar 

  • Zhang X, Candas M, Griko NB, Rose-Young L, Bulla LA Jr (2005) Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ 12:1407–1416

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Candas M, Griko NB, Taussig R, Bulla LA Jr (2006) A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the Cry1Ab toxin of Bacillus thuringiensis. PNAS 103:9897–9902

    Article  PubMed  CAS  Google Scholar 

  • Zhang R, Hua G, Andacht TM, Adang MJ (2008) A 106-kDa aminopeptidase is a putative receptor for Bacillus thuringiensis Cry11Ba toxin in the mosquito Anopheles gambiae. Biochemistry 47(43):11263–11272

    Article  PubMed  CAS  Google Scholar 

  • Zhang SP, Cheng HM, Gao YL, Wang GR, Liang GM, Wu KM (2009) Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol 39:421–429

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by Genetically Modified Organisms Breeding Major Projects (2011ZX08011-003), The Royal Society (RS) and National Natural Science Foundation of China (NSFC) Joint Project (30610236) and NSFC (30571238).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Angharad M. R. Gatehouse or Kanglai He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, L., Ferry, N., Wang, Z. et al. A proteomic approach to study the mechanism of tolerance to Bt toxins in Ostrinia furnacalis larvae selected for resistance to Cry1Ab. Transgenic Res 22, 1155–1166 (2013). https://doi.org/10.1007/s11248-013-9718-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-013-9718-3

Keywords

Navigation