Skip to main content
Log in

Molecular markers as a complementary tool in risk assessments: quantifying interspecific gene flow from triticale to spring wheat and durum wheat

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Triticale is being considered as a bioindustrial crop in Canada using genetic modification. Because related spring wheat (Triticum aestivum) and durum wheat (T. durum) may exhibit synchronous flowering and grow in proximity, determination of interspecific gene flow when triticale is the pollen donor is necessary to evaluate potential risk. Pollen-mediated gene flow risk assessments generally rely on phenotypic markers to detect hybridization but DNA markers could be powerful and less ambiguous in quantifying rare interspecific gene flow. Six cultivars representing four species [spring wheat, durum wheat, triticale and rye (Secale cereale)] were screened with 235 spring wheat and 27 rye SSR markers to evaluate transferability and polymorphism. Fifty-five polymorphic markers were used in conjunction with morphological characterization to quantify interspecific gene flow from a blue aleurone (BA) triticale line to two spring wheat cultivars (AC Barrie and AC Crystal) and one durum wheat cultivar (AC Avonlea). Approximately 1.9 Million seeds from small plot experiments were visually screened in comparison with known hybrid seed. In total 2031 putative hybrids were identified and 448 germinated. Morphological analysis of putative hybrid plants identified five hybrids while molecular analysis identified 11 hybrids and two were common to both. Combined, 14 hybrids were confirmed: 10 spring wheat × triticale (0.0008 % of harvested seed): seven AC Barrie × BA triticale (0.001 %) and three AC Crystal × BA triticale (0.0005 %); and four durum wheat × triticale (0.0006 %). The occurrence of rare hybrids does not present a substantial risk to the development of GM triticale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • [CFIA] Canadian Food Inspection Agency (2011) Novelty and plants with novel traits. http://www.inspection.gc.ca/english/sci/biotech/reg/novnoue.shtml. Accessed 12 March 2011

  • [FDA] US Food and Drug Administration (2006) Statement on report of bioengineered rice in the food supply. http://www.fda.gov/Food/Biotechnology/Announcements/ucm109411.htm. Accessed 23 Sept 2011

  • Abdel-Aal E, Hucl P (2003) Composition and stability of anthocyanins in blue-grained wheat. J Agric Food Chem 51:2174–2180

    Article  CAS  Google Scholar 

  • Aitken K, Li J, Wang L, Qing C, Fan YH, Jackson P (2007) Characterization of intergeneric hybrids of Erianthus rockii and Saccharum using molecular markers. Genet Res Crop Evol 54:1395–1405

    Article  CAS  Google Scholar 

  • Anderson JA, Churchill GA, Autrique JE, Tanksley SD, Sorrells ME (1993) Optimizing parental selection for genetic-linkage maps. Genome 36:181–186

    Article  PubMed  CAS  Google Scholar 

  • Asif M, Mehboob Ur R, Mirza JI, Zafar Y (2009) Parentage confirmation of cotton hybrids using molecular markers. Pak J Bot 41:695–701

    CAS  Google Scholar 

  • Astarini IA, Plummer JA, Lancaster RA, Yan G (2008) Identification of ‘sib’ plants in hybrid cauliflowers using microsatellite markers. Euphytica 164:309–316

    Article  CAS  Google Scholar 

  • Bayer Rice Litigation (2007) In re GM rice litigation. http://www.ctbi.ca/. Accessed 9 Sept 2011

  • Beckie HJ, Warwick SI, Sauder CA, Hall LM, Harker KN, Lozinski C (2011) Pollen-mediated gene flow in commercial fields of spring wheat in Western Canada. Crop Sci 51:306–313

    Article  CAS  Google Scholar 

  • Boodley JW, Sheldrak R (1977) Cornell peat—lite mixes for commercial plant growing. Cornell Plant Science information Bulletin 43

  • Casella G (2011) Types of DNA variants. http://www.stat.ufl.edu/~casella/class/. Accessed 11 Sept 2011

  • Chaubey NK, Khanna VK (1986) A study of crossability between wheat, triticale and rye. Curr Sci 55:744–745

    Google Scholar 

  • Clarke JM, McLeod JG, McCaig TN, DePauw RM, Knox RE, Fernandez MR (1999) Registration of ‘AC Avonlea’ durum wheat. Crop Sci 39:880–881

    Article  Google Scholar 

  • da Costa CT, Albuquerque ACS, do Nascimento AJ, Marcelino FC, Pereira JF (2007) Genetic diversity of Brazilian triticales evaluated with genomic wheat microsatellites. Pesquisa Agropecuaria Brasileira 42:1577–1586

    Article  Google Scholar 

  • den Dunnen JT, Antonarakis SE (2001) Nomenclature for the description of sequence variations. Hum Genet 109:121–124

    Article  Google Scholar 

  • Devos Y, Demont M, Sanvido O (2009) Coexistence of genetically modified (GM) and non-GM crops in the European Union. A review. Agron Sustain Dev 29:11–30

    Article  Google Scholar 

  • Dorofeev VF (1969) Spontaneous hybridization in wheat populations of Transcaucasia. Euphytica 18:406–416

    Article  Google Scholar 

  • Dou QW, Tanaka H, Nakata N, Tsujimoto H (2006) Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid triticale. Theor Appl Genet 114:41–47

    Article  PubMed  CAS  Google Scholar 

  • EUROPA (2007) Questions and answers on the regulations of GMOs in the European Union. http://europa.eu/rapid/pressReleasesAction.do?reference=MEMO/07/117&format=HTML&aged=0<uage=EN&guiLanguage=en. Accessed 15 Jan 2011

  • EUROPA (2011) Commission regulation (EU) No 619/2011. http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2011:166:0009:0015:EN:PDF. Accessed 26 March 2012

  • Fernandez MR, DePauw RM, Knox RE, Clarke JM, McCaig TN, McLeod JG (1998) AC Crystal red spring wheat. Can J Plant Sci 78:307–310

    Article  Google Scholar 

  • Flax Council of Canada (2009a) Flax Council of Canada announces GRAS status determined for flax in USA. Flax Focus 22:1–8

    Google Scholar 

  • Flax Council of Canada (2009b) GMO Flax Update #1 Revised

  • Fu S, Tang Z, Ren Z, Zhang H, Yan B (2010) Isolation of rye-specific DNA fragment and genetic diversity analysis of rye genus Secale L. using wheat SSR markers. J Genet 89:489–492

    Article  PubMed  Google Scholar 

  • Gill BS, Waines JG (1978) Paternal regulation of seed development in wheat hybrids. Theor Appl Genet 51:265–270

    Article  Google Scholar 

  • Gill BS, Waines JG, Sharma HC (1981) Endosperm abortion and production of viable Aegilops squarrosa × Triticum boeoticum hybrids by embryo culture. Pl Sci Letters 23:181–187

    Article  Google Scholar 

  • Gomez SM, Denwar NN, Ramasubramainian T, Simpson CE, Burow G, Burke JJ, Puppala N, Burow MD (2008) Identification of peanut hybrids using microsatellite markers and horizontal polyacrylamide gel electrophoresis. Peanut Sci 35:123–129

    Article  Google Scholar 

  • Guedes-Pinto H, Lima-Brito J, Ribeiro-Carvalho C, Gustafson JP (2001) Genetic control of crossability of triticale with rye. Plant Breeding 120:27–31

    Article  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Baylan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genomics 270:315–323

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards KJ, Bernard M (2002) Characterisation of polymorphic microsatellite markers from Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  Google Scholar 

  • Hackauf B, Wehling P (2002) Identification of microsatellite polymorphisms in an expresed portion of the rye genome. Plant Breeding = Zeitschrift für Pflanzenzüchtung 121:17–25

    Google Scholar 

  • Henry R, Kettlewell P (1996) Cereal grain quality. Chapman and Hall, London

    Book  Google Scholar 

  • Hills MJ, Hall LM, Messenger DF, Graf RJ, Beres BL (2007) Evaluation of crossability between triticale (X Triticosecale Wittmack) and common wheat, durum wheat and rye. Environ Biosaf Res 6:249–257

    Article  Google Scholar 

  • Hucl P, Matus-Cadiz MA, Sahota AS, Middleton A, Mooney D, Maruschak JL (2004) Sources of off-types in pedigreed seed of common spring wheat. Can J Plant Sci 84:519–523

    Article  Google Scholar 

  • Isaac P (2004) The WMC microsatellites. IDna genetics http://147.49.50.65/ggpages/SSR/WMC/WMC_TheInsideStory.html. Accessed 5 July 2011

  • Jauhar PP, Chibbar RN (1999) Chromosome-mediated and direct gene transfers in wheat. Genome 42:570–583

    Article  CAS  Google Scholar 

  • Jhala AJ, Bhatt H, Topinka K, Hall LM (2011) Pollen-mediated gene flow in flax (Linum usitatissimum L.): can genetically engineered and organic flax coexist? Heredity 106:1–10

    Article  Google Scholar 

  • Kavanagh VB, Hall JC, Hall LM (2010) Potential hybridization of genetically engineered triticale with wild and weedy relatives in Canada. Crop Sci 50:1128–1140

    Article  Google Scholar 

  • Kavanagh VB, Hills MJ, Eudes F, Topinka AK, Hall LM (2012) Pollen-mediated gene flow in triticale (XTriticosecale). Crop Sci. 52:2292–2303

    Google Scholar 

  • Kuleung C, Baenziger PS, Dweikat I (2004) Transferability of SSR markers among wheat, rye, and triticale. Theor Appl Genet 108:1147–1150

    Article  PubMed  CAS  Google Scholar 

  • Kuleung C, Baenziger PS, Kachman SD, Dweikat I (2006) Evaluating the genetic diversity of triticale with wheat and rye SSR markers. Crop Sci 46:1692–1700

    Article  CAS  Google Scholar 

  • Lafarga de la Cruz F, Amar-Basulto G, Angel del Rio-Portilla M, Gallardo-Escarate C (2010) Genetic analysis of an artificially produced hybrid abalone (Haliotis rufescens × Haliotis discus hannai) in Chile. J Shellfish Res 29:717–724

    Article  Google Scholar 

  • Lelley T (1992) Triticale, still a promise. Plant Breeding 109:1–17

    Article  Google Scholar 

  • Liu L, Wang Y, Gong Y, Zhao T, Liu G, Li X, Yu F (2007) Assessment of genetic purity of tomato (Lycopersicon esculentum L.) hybrid using molecular markers. Scientia Horticul 115:7–12

    Article  CAS  Google Scholar 

  • Luo X, Ke C, You W, Wang D, Chen F (2010) Molecular identification of interspecific hybrids between Haliotis discus hannai ino and Haliotis gigantea gmelin using amplified fragment-length polymorphism and microsatellite markers. Aquacult Res 41:1827–1834

    Article  Google Scholar 

  • Ma X, Gustafson JP (2008) Allopolyploidization-accommodated genomic sequence changes in triticale. Ann Bot 101:825–832

    Article  PubMed  Google Scholar 

  • Mangini G, Taranto F, Giove SL, Gadaleta A, Blanco A (2010) Identification of durum wheat cultivars by a minimum number of microsatellite markers. Cereal Res Commun 38:155–162

    Article  CAS  Google Scholar 

  • Matus-Cadiz MA, Hucl P, Dupuis B (2007) Pollen-mediated gene flow in wheat at the commercial scale. Crop Sci 47:573–581

    Article  CAS  Google Scholar 

  • McCaig TN, DePauw RM, Clarke JM, McLeod JG, Fernandez MR, Knox RE (1996) AC Barrie hard red spring wheat. Can J Plant Sci 76:337–339

    Article  Google Scholar 

  • McLeod JG, Clarke JM, DePauw RM, Townley-Smith T (1996) Registration of ‘AC Alta’ spring triticale. Crop Sci 36:1415

    Google Scholar 

  • Nair NV, Selvi A, Sreenivasan TV, Pushpalatha KN, Mary S (2006) Characterization of intergeneric hybrids of Saccharum using molecular markers. Genet Res Crop Evol 53:163–169

    Article  CAS  Google Scholar 

  • Oettler G (2005) The fortune of a botanical curiosity—Triticale: past, present and future. J Agric Sci 143:329–346

    Article  Google Scholar 

  • Pallavi HM, Gowda R, Vishwanath K, Shadakshari YG, Bhanuprakash K (2011) Identification of SSR markers for hybridity and seed genetic purity testing in sunflower (Helianthus annuus L.). Seed Sci Technol 39:259–264

    Google Scholar 

  • Randhawa HS, Mutti JS, Kidwell K, Morris CF, Chen XM, Gill KS (2009) Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection. PLoS ONE 4:e5752

    Article  PubMed  Google Scholar 

  • Rieseberg LH, Ellstrand NC (1993) What can molecular and morphological markers tell us about plant hybridization? Crit Rev Plant Sci 12:213–241

    CAS  Google Scholar 

  • Roder MS, Plaschke J, Konig SU, Borner A, Sorrells ME, Tanksley SD, Ganal MW (1995) Abundance, variability and chromosomal location of microsatellites in wheat. Mol Gen Genet 246:327–333

    Article  PubMed  CAS  Google Scholar 

  • Roder MS, Korzun V, Gill BS, Ganal MW (1998) The physical mapping of microsatellite markers in wheat. Genome 41:278–283

    Article  CAS  Google Scholar 

  • Saal B, Wricke G (1999) Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972

    PubMed  CAS  Google Scholar 

  • Salem KFM, El-Zanaty AM, Esmail RM (2008) Assessing wheat (Triticum aestivum L.) genetic diversity using morphological characters and microsatellite markers. World J Agr Sci 4:538–544

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Fickus EW, Cregan PB (2002) Characterization of trinucleotide SSR motifs in wheat. Theor Appl Genet 104:286–293

    Article  PubMed  CAS  Google Scholar 

  • Song QJ, Shi JR, Singh S, Fickus EW, Costa JM, Lewis J, Gill BS, Ward R, Cregan PB (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor Appl Genet 110:550–560

    Article  PubMed  CAS  Google Scholar 

  • Sourdille P, Cadalen T, Guyomarc’h H, Snape JW, Perretant MR, Charmet G, Boeuf C, Bernard S, Bernard M (2003) An update of the courtot × Chinese spring intervarietal molecular marker linkage map for the QTL detection of agronomic traits in wheat. Theor Appl Genet 106:530–538

    PubMed  CAS  Google Scholar 

  • Tams SH, Bauer E, Oettler G, Melchinger AE (2004) Genetic diversity in European winter triticale determined with SSR markers and coancestry coefficient. Theor Appl Genet 108:1385–1391

    Article  PubMed  CAS  Google Scholar 

  • Vyhnanek T, Nevrtalova E, Slezakova K (2009) Detection of the genetic variability of triticale using wheat and rye SSR markers. Cereal Res Commun 37:23–29

    Article  Google Scholar 

  • Waines JG, Hegde SG (2003) Intraspecific gene flow in bread wheat as affected by reproductive biology and pollination ecology of wheat flowers. Crop Sci 43:451–463

    Article  Google Scholar 

  • Warwick SI, Simard M-J, Légère A, Beckie HJ, Braun L, Zhu B, Mason P, Séguin-Swartz G, Stewart CN (2003) Hybridization between transgenic Brassica napus L. and its wild relatives: Brassica rapa L., Raphanus raphanistrum L., Sinapis arvensis L., and Erucastrum gallicum (Willd.) O.E Schulz. Theor Appl Genet 107:528–539

    Article  PubMed  CAS  Google Scholar 

  • Weissmann S, Gressel J, Feldman M (2008) Hypothesis: transgene establishment in wild relatives of wheat can be prevented by utilizing the Ph1 gene as a senso stricto chaperon to prevent homoeologous recombination. Plant Sci 175:410–414

    Article  CAS  Google Scholar 

  • Zhang LY, Bernard M, Ravel C, Balfourier F, Leroy P, Feuillet C, Sourdille P (2007) Wheat EST-SSRs for tracing chromosome segments from a wide range of grass species. Plant Breeding 126:251–258

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Agriculture Bioproducts Innovation Program (ABIP), Agriculture and Agri-Food Canada (AAFC), Alberta Agriculture and Rural Development (AARD), the Canadian Triticale Biorefinery Initiative (CTBI), and the Alberta Agricultural Research Institute (AARI) for their generous financial support. In addition, we thank Judy Irving, Kim Walsh, Jaime Crowe, Lisa Raatz, Amit Jhala for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda M. Hall.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 32 kb)

11248_2012_9683_MOESM2_ESM.pdf

Supplemental Figure 1. Seed of hybrid wheat x triticale crosses obtained in manual greenhouse crosses between: (a) AC Barrie x BA triticale, (b) AC Crystal x BA triticale. BA triticale seed is added for comparison (PDF 377 kb)

11248_2012_9683_MOESM3_ESM.pdf

Supplemental Figure 2. Seeds from confirmed AC Barrie x BA triticale crosses (a), AC Crystal x BA triticale (b) and AC Avonlea x BA triticale (c). BA triticale seed is added for comparison (PDF 138 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kavanagh, V.B., Hills, M.J., Goyal, A. et al. Molecular markers as a complementary tool in risk assessments: quantifying interspecific gene flow from triticale to spring wheat and durum wheat. Transgenic Res 22, 767–778 (2013). https://doi.org/10.1007/s11248-012-9683-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-012-9683-2

Keywords

Navigation