Skip to main content
Log in

Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Millets stand out as a sustainable crop with the potential to address the issues of food insecurity and malnutrition. These small-seeded, drought-resistant cereals have adapted to survive a broad spectrum of abiotic stresses. Researchers are keen on unravelling the regulatory mechanisms that empower millets to withstand environmental adversities. The aim is to leverage these identified genetic determinants from millets for enhancing the stress tolerance of major cereal crops through genetic engineering or breeding. This review sheds light on transcription factors (TFs) that govern diverse abiotic stress responses and play role in conferring tolerance to various abiotic stresses in millets. Specifically, the molecular functions and expression patterns of investigated TFs from various families, including bHLH, bZIP, DREB, HSF, MYB, NAC, NF-Y and WRKY, are comprehensively discussed. It also explores the potential of TFs in developing stress-tolerant crops, presenting a comprehensive discussion on diverse strategies for their integration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data in the review article are available from the corresponding author upon request.

References

  • Agarwal PK, Gupta K, Lopato S et al (2017) Dehydration responsive element binding transcription factors and their applications for the engineering of stress tolerance. J Exp Bot 68:2135–2148

    CAS  PubMed  Google Scholar 

  • Aida M, IshidaT FH et al (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9:841–857

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ajeesh Krishna TP, Maharajan T, Ceasar SA (2022) Improvement of millets in the post-genomic era. Physiol Mol Biol Plants 28:669–685

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akbudak MA, Filiz E, Kontbay K (2018) DREB2 (dehydration-responsive element-binding protein 2) type transcription factor in sorghum (Sorghum bicolor): genome-wide identification, characterization and expression profiles under cadmium and salt stresses. 3 Biotech 8:1–16

    Google Scholar 

  • Al-Whaibi MH (2011) Plant heat-shock proteins: a mini review. J King Saud Univ Sci 23:139–150

    Google Scholar 

  • Ambawat S, Sharma P, Yadav NR et al (2013) MYB transcription factor genes as regulators for plant responses: an overview. Physiol Mol Biol Plants 19:307–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • An P, Li X, Liu T et al (2022) The identification of broomcorn millet bZIP transcription factors, which regulate growth and development to enhance stress tolerance and seed germination. Int J Mol Sci 23:6448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Antunes MS, Morey KJ, Tewari-Singh N et al (2009) Engineering key components in a synthetic eukaryotic signal transduction pathway. Mol Syst Biol 5:270

    PubMed  PubMed Central  Google Scholar 

  • Antunes MS, Morey KJ, Smith JJ et al (2011) Programmable ligand detection system in plants through a synthetic signal transduction pathway. PLoS ONE 6:e16292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arakawa H (2016) A method to convert mRNA into a gRNA library for CRISPR/Cas9 editing of any organism. Sci Adv 2:e1600699

    PubMed  PubMed Central  Google Scholar 

  • Babitha KC, Vemanna RS, Nataraja KN et al (2015) Overexpression of EcbHLH57 transcription factor from Eleusine coracana L. in tobacco confers tolerance to salt, oxidative and drought stress. PLoS ONE 10:e0137098

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay T, Muthamilarasan M, Prasad M (2017) Millets for next generation climate-smart agriculture. Front Plant Sci 8:1266

    PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay T, Swarbreck SM, Jaiswal V (2022) GWAS identifies genetic loci underlying nitrogen responsiveness in the climate resilient C4 model Setaria italica (L.). J Adv Res 42:249–261

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay T, Singh RK, Ramesh P et al (2023) the promise of millets in the twenty-first century: emphasis on breeding, nutrition, food security and sustainability. J Soil Sci Plant Nutr 23:628–637

    Google Scholar 

  • Baniwal SK, Bharti K, Chan KY et al (2014) Heat stress response in plants: a complex game with chaperones and more than twenty heat stress transcription factors. J Biosci 29:471–487

    Google Scholar 

  • Baoxiang W, Zhiguang S, Yan L et al (2023) A pervasive phosphorylation cascade modulation of plant transcription factors in response to abiotic stress. Planta 258:73

    PubMed  Google Scholar 

  • Bechtold U, Field B (2018) Molecular mechanisms controlling plant growth during abiotic stress. J Exp Bot 69:2753–2758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bennetzen JL, Schmutz J, Wang H et al (2012) Reference genome sequence of the model plant Setaria. Nat Biotechnol 30:555–561

    CAS  PubMed  Google Scholar 

  • Bian Z, Gao H, Wang C (2020) NAC transcription factors as positive or negative regulators during ongoing battle between pathogens and our food crops. Int J Mol Sci 22:81

    PubMed  PubMed Central  Google Scholar 

  • Bihani P, Char B, Bhargava S (2011) Transgenic expression of sorghum DREB2 in rice improves tolerance and yield under water limitation. J Agric Sci 149:95–101

    CAS  Google Scholar 

  • Blanc-Mathieu R, Dumas R, Turchi L et al (2023) Plant-TFClass: a structural classification for plant transcription factors. Trends Plant Sci S1360–1385(23):00227–00233

    Google Scholar 

  • Bouton C, King RC, Chen H et al (2018) Foxtail mosaic virus: a viral vector for protein expression in cereals. Plant Physiol 177:1352–1367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ceasar A (2022) Genome-editing in millets: current knowledge and future perspectives. Mol Biol Rep 49:773–781

    CAS  PubMed  Google Scholar 

  • Chanwala J, Satpati S, Dixit A et al (2020) Genome-wide identification and expression analysis of WRKY transcription factors in pearl millet (Pennisetum glaucum) under dehydration and salinity stress. BMC Genom 21:231

    CAS  Google Scholar 

  • Chaudhry S, Sidhu GPS (2022) Climate change regulated abiotic stress mechanisms in plants: a comprehensive review. Plant Cell Rep 41:1–31

    CAS  PubMed  Google Scholar 

  • Christianson JA, Dennis ES, Llewellyn DJ et al (2010) ATAF NAC transcription factors: regulators of plant stress signaling. Plant Signal Behav 5:428–432

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dou Y, Qin Y, Min D et al (2017) Transcription factor SiNAC18 positively regulates seed germination under drought stress through ABA signaling pathway in foxtail millet (Setaria italic L.). Sci Agric Sin 50:3071–3081

    Google Scholar 

  • Dudhate A, Shinde H, Yu P et al (2021) Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum). BMC Genom 22:1–15

    Google Scholar 

  • Erpen L, Devi HS, Grosser JW et al (2018) Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell Tissue Organ Cult 132:1–25

    CAS  Google Scholar 

  • Fan Y, Lai D, Yang H et al (2021) Genome-wide identification and expression analysis of the bHLH transcription factor family and its response to abiotic stress in foxtail millet (Setaria italica L.). BMC Genom 22:778

    CAS  Google Scholar 

  • Fragkostefanakis S, Roeth S, Schleiff E et al (2015) Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. Plant Cell Environ 38:1881–1895

    CAS  PubMed  Google Scholar 

  • Gawai D, Moharil M, Jadhav P (2017) Differential gene expression in foxtail millet (Setaria italica) under water stress. IJRANSS 5:99–104

    Google Scholar 

  • Ge L, Dou Y, Li M et al (2019) SiMYB3 in foxtail millet (Setaria italica) confers tolerance to low-nitrogen stress by regulating root growth in transgenic plants. Int J Mol Sci 20:5741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzalez DH (2015) Plant Transcription factors: evolutionary, structural and functional aspects. Elsevier, London, UK

    Google Scholar 

  • Goold HD, Wright P, Hailstones D (2018) Emerging opportunities for synthetic biology in agriculture. Genes 9:341

    PubMed  PubMed Central  Google Scholar 

  • Guo Y, Gan S (2006) AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J 46:601–612

    CAS  PubMed  Google Scholar 

  • He M, He CQ, Ding NZ (2018) Abiotic stresses: general defenses of land plants and chances for engineering multistress tolerance. Front Plant Sci 9:1771

    PubMed  PubMed Central  Google Scholar 

  • Hittalmani S, Mahesh HB, Shirke MD et al (2017) Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genom 18:16

    Google Scholar 

  • Hrmova M, Hussain SS (2021) Plant transcription factors involved in drought and associated stresses. Int J Mol Sci 22:5662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Sun M, Zhang A et al (2021) Transcriptional changes in pearl millet leaves under heat stress. Genes 12:1716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inukai S, Kock KH, Bulyk ML (2017) Transcription factor–DNA binding: beyond binding site motifs. Curr Opin Genet Dev 43:110–119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Ma S, Ye N et al (2017) WRKY transcription factors in plant responses to stresses. J Integr Plant Biol 59:86–101

    CAS  PubMed  Google Scholar 

  • Joshi R, Wani SH, Singh B et al (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    PubMed  PubMed Central  Google Scholar 

  • Kheya SA, Talukder SK, Datta P et al (2023) Millets: the future crops for the tropics-status, challenges and future prospects. Heliyon 9:e22123

    PubMed  PubMed Central  Google Scholar 

  • Kikuchi K, Ueguchi-Tanaka M, Yoshida KT et al (2000) Molecular analysis of the NAC gene family in rice. Mol Gen Genet MGG 262:1047–1051

    CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Urban MO et al (2015) Biological networks underlying abiotic stress tolerance in temperate crops—a proteomic perspective. Int J Mol Sci 16:20913–20942

    PubMed  PubMed Central  Google Scholar 

  • Kristensen C, Morant M, Olsen CE et al (2005) Metabolic engineering of dhurrin in transgenic Arabidopsis plants with marginal inadvertent effects on the metabolome and transcriptome. Proc Natl Acad Sci 102:1779–1784

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar V, Singh B, Kumar Singh R, Sharma N, Muthamilarasan M, Sawant SV, Prasad M (2024) Histone deacetylase 9 interacts with SiHAT3.1 and SiHDA19 to repress dehydration responses through H3K9 deacetylation in foxtail millet. J Exp Bot 75:1098–1111

    PubMed  Google Scholar 

  • Lata C, Prasad M (2011) Role of DREBs in regulation of abiotic stress responses in plants. J Exp Bot 62:4731–4748

    CAS  PubMed  Google Scholar 

  • Lata C, Bhutty S, Bahadur RP (2011) Association of an SNP in a novel DREB2-like gene SiDREB2 with stress tolerance in foxtail millet [Setaria italica (L.)]. J Exp Bot 62:3387–3401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Yue J, Wu X et al (2014) An ABA-responsive DRE-binding protein gene from Setaria italica, SiARDP, the target gene of SiAREB, plays a critical role under drought stress. J Exp Bot 65:5415–5427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Dong Y, Li C et al (2017) SiASR4, the target gene of SiARDP from Setaria italica, improves abiotic stress adaption in plants. Front Plant Sci 7:2053

    PubMed  PubMed Central  Google Scholar 

  • Lin CS, Hsu CT, Yang LH et al (2018) Application of protoplast technology to CRISPR/Cas9 mutagenesis: from single-cell mutation detection to mutant plant regeneration. Plant Biotechnol J 16:1295–1310

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Zhang G, Chen S (2001) Structure and regulatory function of plant transcription factors. Chin Sci Bull 46:271–278

    CAS  Google Scholar 

  • Liu N, Xie K, Jia Q et al (2016) Foxtail mosaic virus-induced gene silencing in monocot plants. Plant Physiol 171:1801–1807

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mahesh HB, Shirke MD, Ghodke I et al (2022) Role of inducible promoters and transcription factors in conferring abiotic stress-tolerance in small millets. Omics of Climate resilient small millets. Springer Nature Singapore, Singapore, pp 69–86

    Google Scholar 

  • Maheshwari P, Kummari D, Palakolanu SR et al (2019) Genome-wide identification and expression profile analysis of nuclear factor Y family genes in Sorghum bicolor L. (Moench). PLoS ONE 14:e0222203

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mantri N, Patade V, Penna S et al (2012) Abiotic stress responses in plants: present and future. Abiotic stress responses in plants. Springer, New York, USA, pp 1–19

    Google Scholar 

  • Meena RP, Ghosh G, Vishwakarma H et al (2022) Expression of a Pennisetum glaucum gene DREB2A confers enhanced heat, drought and salinity tolerance in transgenic Arabidopsis. Mol Biol Rep 49:7347–7358

    CAS  PubMed  Google Scholar 

  • Mittler R, Finka A, Goloubinoff P (2012) How do plants feel the heat? Trends Biochem Sci 37:118–125

    CAS  PubMed  Google Scholar 

  • Mukesh Sankar S, Tara Satyavathi C, Barthakur S et al (2021) Differential modulation of heat-inducible genes across diverse genotypes and molecular cloning of a sHSP from pearl millet [Pennisetum glaucum (L.) R. Br.]. Front Plant Sci 12:659893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu J, Guan Y, Yu X et al (2023) SiNF-YC2 regulates early maturity and salt tolerance in Setaria italica. Int J Mol Sci 24:7217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nover L, Bharti K, Döring P et al (2001) Arabidopsis and the heat stress transcription factor world: how many heat stress transcription factors do we need? Cell Stress Chaperones 6:177–189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nuruzzaman M, Manimekalai R, Sharoni AM et al (2010) Genome-wide analysis of NAC transcription factor family in rice. Gene 465:30–44

    CAS  PubMed  Google Scholar 

  • Olsen AN, Ernst HA, Leggio LL et al (2005) NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci 10:79–87

    CAS  PubMed  Google Scholar 

  • Pandurangaiah M, Gunupuru LR, Veeranagamallaiah G (2016) Molecular cloning and characterization of a novel SiDREB2L gene encoding DRE-binding transcription factor2 protein from Foxtail millet (Setaria italica. L., Cv. Prasad). J Plant Biol Res 5:48–57

    CAS  Google Scholar 

  • Pardey PG, Beddow JM, Hurley TM et al (2014) A bounds analysis of world food futures: global agriculture through to 2050. Aust J Agric Resour Econ 58:571–589

    Google Scholar 

  • Peng R, Zhang B (2021) Foxtail millet: a new model for C4 plants. Trends Plant Sci 26:199–201

    CAS  PubMed  Google Scholar 

  • Punia H, Tokas J, Malik A et al (2021) Genome-wide transcriptome profiling, characterization, and functional identification of NAC transcription factors in sorghum under salt stress. Antioxidants 10:1605

    CAS  PubMed  PubMed Central  Google Scholar 

  • Puranik S, Sahu PP, Srivastava PS et al (2012) NAC proteins: regulation and role in stress tolerance. Trends Plant Sci 17:369–381

    CAS  PubMed  Google Scholar 

  • Puranik S, Bahadur RP, Srivastava PS et al (2011a) Molecular cloning and characterization of a membrane associated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.]. Mol Biotechnol 49:138–150

    CAS  PubMed  Google Scholar 

  • Puranik S, Jha S, Srivastava PS et al (2011b) Comparative transcriptome analysis of contrasting foxtail millet cultivars in response to short-term salinity stress. J Plant Physiol 168:280–287

    CAS  PubMed  Google Scholar 

  • Puranik S, Sahu PP, Mandal SN et al (2013) Comprehensive genome-wide survey, genomic constitution and expression profiling of the NAC transcription factor family in foxtail millet (Setaria italica L.). PLoS ONE 8:e64594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman H, Ramanathan V, Nallathambi J et al (2016) Over-expression of a NAC 67 transcription factor from finger millet (Eleusine coracana L.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol 16:7–20

    Google Scholar 

  • Ramakrishna C, Singh S, Raghavendrarao S et al (2018) The membrane tethered transcription factor EcbZIP17 from finger millet promotes plant growth and enhances tolerance to abiotic stresses. Sci Rep 8:2148

    PubMed  PubMed Central  Google Scholar 

  • Ramegowda V, Senthil-Kumar M, Nataraja KN et al (2012) Expression of a finger millet transcription factor, EcNAC1, in tobacco confers abiotic stress-tolerance. PLoS ONE 7:e40397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rani V, Joshi DC, Joshi P et al (2023) “Millet Models” for harnessing nuclear factor-Y transcription factors to engineer stress tolerance in plants: current knowledge and emerging paradigms. Planta 258:29

    CAS  PubMed  Google Scholar 

  • Reis SPD, Lima AM, De Souza CRB (2012) Recent molecular advances on downstream plant responses to abiotic stress. Int J Mol Sci 13:8628–8647

    PubMed  PubMed Central  Google Scholar 

  • Ren T, Wang J, Zhao M et al (2018) Involvement of NAC transcription factor SiNAC1 in a positive feedback loop via ABA biosynthesis and leaf senescence in foxtail millet. Planta 247:53–68

    CAS  PubMed  Google Scholar 

  • Rockström J, Williams J, Daily G et al (2017) Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46:4–17

    PubMed  Google Scholar 

  • Sakuma Y, Liu Q, Dubouzet JG (2002) DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression. Biochem Biophys Res Commun 290:998–1009

    CAS  PubMed  Google Scholar 

  • Sanjari S, Shirzadian-Khorramabad R, Shobbar ZS et al (2019) Systematic analysis of NAC transcription factors’ gene family and identification of post-flowering drought stress responsive members in sorghum. Plant Cell Rep 38:361–376

    CAS  PubMed  Google Scholar 

  • Sargent D, Conaty WC, Tissue DT et al (2022) Synthetic biology and opportunities within agricultural crops. J Sustain Agric Environ 1:89–107

    Google Scholar 

  • Satish L, Rathinapriya P, Muthuramalingam P et al (2020) Overexpression of Erianthus arundinaceus DREB2 transcription factor ameliorates the salinity and drought tolerance in Eleusine coracana cultivars. In: Biology and life sciences forum 4, MDPI.

  • Shan Z, Jiang Y, Li H et al (2020) Genome-wide analysis of the NAC transcription factor family in broomcorn millet (Panicum miliaceum L.) and expression analysis under drought stress. BMC Genom 21:1–13

    Google Scholar 

  • Shao H, Wang H, Tang X (2015) NAC transcription factors in plant multiple abiotic stress responses: progress and prospects. Front Plant Sci 6:902

    PubMed  PubMed Central  Google Scholar 

  • Shinde H, Dudhate A, Tsugama D et al (2019) Pearl millet stress-responsive NAC transcription factor PgNAC21 enhances salinity stress tolerance in Arabidopsis. Plant Physiol Biochem 135:546–553

    CAS  PubMed  Google Scholar 

  • Shiriga K, Sharma R, Kumar K et al (2014) Genome-wide identification and expression pattern of drought responsive members of the NAC family in maize. Meta Gene 2:407–417

    PubMed  PubMed Central  Google Scholar 

  • Shiraku ML, Magwanga RO, Zhang Y et al (2022) Late embryogenesis abundant gene LEA3 (Gh_A08G0694) enhances drought and salt stress tolerance in cotton. Int J Biol Macromol 207:700–714

    CAS  PubMed  Google Scholar 

  • Singh VK, Shukla AK, Singh AK (2019) Impact of climate change on plant-microbe interactions under agroecosystems. Climate change and agricultural ecosystems. Woodland publishing, Cambridge, MA, pp 153–179

    Google Scholar 

  • Singh RK, Muthamilarasan M, Prasad M (2021a) Biotechnological approaches to dissect climate-resilient traits in millets and their application in crop improvement. J Biotech 327:64–73

    CAS  Google Scholar 

  • Singh S, Chopperla R, Shingote P et al (2021b) Overexpression of EcDREB2A transcription factor from finger millet in tobacco enhances tolerance to heat stress through ROS scavenging. J Biotechnol 336:10–24

    CAS  PubMed  Google Scholar 

  • Singh S, Koyama H, Bhati KK et al (2021c) The biotechnological importance of the plant-specific NAC transcription factor family in crop improvement. J Plant Res 134:475–495

    CAS  PubMed  PubMed Central  Google Scholar 

  • Singh RK, Muthamilarasan M, Prasad M (2022a) SiHSFA2e regulated expression of SisHSP21. 9 maintains chloroplast proteome integrity under high temperature stress. Cell Mol Life Sci 79:580

    CAS  PubMed  Google Scholar 

  • Singh RP, Qidwai S, Singh O et al (2022b) Millets for food and nutritional security in the context of climate resilient agriculture: a review. Int J Plant Soil Sci 31:939–953

    Google Scholar 

  • Souer E, van Houwelingen A, Kloos D et al (1996) The no apical meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85:159–170

    CAS  PubMed  Google Scholar 

  • Su H, Zhang S, Yin Y et al (2015) Genome-wide analysis of NAM-ATAF1, 2-CUC2 transcription factor family in Solanum lycopersicum. J Plant Biochem Biotechnol 24:176–183

    CAS  Google Scholar 

  • Sun M, Huang D, Zhang A et al (2020) Transcriptome analysis of heat stress and drought stress in pearl millet based on Pacbio full-length transcriptome sequencing. BMC Plant Biol 20:1–15

    CAS  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V et al (2014) Abiotic and biotic stress combinations. New Phytol 203:32–43

    PubMed  Google Scholar 

  • Varshney RK, Shi C, Thudi M et al (2017) Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat Biotechnol 35:969–976

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Dane F (2013) NAC (NAM/ATAF/CUC) transcription factors in different stresses and their signaling pathway. Acta Physiol Plant 35:1397–1408

    CAS  Google Scholar 

  • Wang M, Li P, Li C et al (2014) SiLEA14, a novel atypical LEA protein, confers abiotic stress resistance in foxtail millet. BMC Plant Biol 14:1–16

    Google Scholar 

  • Waqas MA, Kaya C, Riaz A et al (2019) Potential mechanisms of abiotic stress tolerance in crop plants induced by thiourea. Front Plant Sci 10:1336

    PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wen J, Xia Y et al (2022) Evolution and functional diversification of R2R3-MYB transcription factors in plants. Hortic Res 9:uhac058

    PubMed  PubMed Central  Google Scholar 

  • Xie LN, Chen M, Min DH et al (2017) The NAC-like transcription factor SiNAC110 in foxtail millet (Setaria italica L.) confers tolerance to drought and high salt stress through an ABA independent signaling pathway. J Integr Agric 16:559–571

    CAS  Google Scholar 

  • Xu W, Tang W, Wang C et al (2020) SiMYB56 confers drought stress tolerance in transgenic rice by regulating lignin biosynthesis and ABA signaling pathway. Front Plant Sci 11:785

    PubMed  PubMed Central  Google Scholar 

  • Xu C, Luo M, Sun X et al (2022) SiMYB19 from foxtail millet (Setaria italica) confers transgenic rice tolerance to high salt stress in the field. Int J Mol Sci 23:756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1993) The plant hormone abscisic acid mediates the drought-induced expression but not the seed-specific expression of rd22, a gene responsive to dehydration stress in Arabidopsis thaliana. Mol Genet Genom 238:17–25

    CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Zhang H, Li X et al (2020) A mini foxtail millet with an Arabidopsis-like life cycle as a C4 model system. Nat Plants 6:1167–1178

    CAS  PubMed  Google Scholar 

  • Yu Y, Guo DD, Min DH et al (2023) Foxtail millet MYB-like transcription factor SiMYB16 confers salt tolerance in transgenic rice by regulating phenylpropane pathway. Plant Physiol Biochem 195:310–321

    CAS  PubMed  Google Scholar 

  • Yuan C, Li H, Qin C et al (2020) Foxtail mosaic virus-induced flowering assays in monocot crops. J Exp Bot 71:3012–3023

    CAS  PubMed  Google Scholar 

  • Yue J, Li C, Liu Y (2014) A remorin gene SiREM6, the target gene of SiARDP, from foxtail millet (Setaria italica) promotes high salt tolerance in transgenic Arabidopsis. PLoS ONE 9:e100772

    PubMed  PubMed Central  Google Scholar 

  • Yue H, Wang M, Liu S et al (2016) Transcriptome-wide identification and expression profiles of the WRKY transcription factor family in Broomcorn millet (Panicum miliaceum L). BMC Genom 17:343

    Google Scholar 

  • Zhang G, Liu X, Quan Z et al (2012) Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat Biotechnol 30:549–554

    CAS  PubMed  Google Scholar 

  • Zhang L, Shu H, Zhang A et al (2017) Foxtail millet WRKY genes and drought stress. The J Agric Sci 155:777–790

    CAS  Google Scholar 

  • Zhang Y, He Z, Qi X et al (2023) Overexpression of MYB-like transcription factor SiMYB30 from foxtail millet (Setaria italica L.) confers tolerance to low nitrogen stress in transgenic rice. Plant Physiol Biochem 196:731–738

    CAS  PubMed  Google Scholar 

  • Zou C, Li L, Miki D et al (2019) The genome of broomcorn millet. Nat Commun 10:436

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors’ work in this area is supported by J.C. Bose National Fellowship (file no. JBR/2023/000024) as well as research grant from the Ministry of Science and Technology, Gov. of India [grant-CRG/2020/000488 and BT/Ag/Network/Wheat/2019-20]. Panchal, A. acknowledges the Department of Biotechnology (DBT), Government of India, for the research fellowship. The authors are also thankful to DBT-eLibrary Consortium (DeLCON) for providing access to the e-resources. All the figures were made using BioRender (https://biorender.com/).

Author information

Authors and Affiliations

Authors

Contributions

Prasad, M., Prusty, A. and Panchal, A. conceptualized and designed the outline of the manuscript. Prusty, A. and Panchal, A. wrote the first draft of the manuscript and prepared the figures. Prusty, A., Panchal, A., Singh, R.K. and Prasad, M. revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manoj Prasad.

Ethics declarations

Conflict of interest

No conflict of interest was declared.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prusty, A., Panchal, A., Singh, R.K. et al. Major transcription factor families at the nexus of regulating abiotic stress response in millets: a comprehensive review. Planta 259, 118 (2024). https://doi.org/10.1007/s00425-024-04394-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-024-04394-2

Keywords

Navigation