Skip to main content
Log in

In planta differential targeting analysis of Thermotoga maritima Cel5A and CBM6-engineered Cel5A for autohydrolysis

  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

The heterologous expression of glycosyl hydrolases in bioenergy crops can improve the lignocellulosic conversion process for ethanol production. We attempted to obtain high-level expression of an intact Thermotoga maritima endoglucanase, Cel5A, and CBM6-engineered Cel5A in transgenic tobacco plants for the mass production and autohydrolysis of endoglucanase. Cel5A expression was targeted to different subcellular compartments, namely, the cytosol, apoplast, and chloroplast, using the native form of the pathogenesis-related protein 1a (PR1a) and Rubisco activase (RA) transit peptides. Cel5A transgenic tobacco plants with the chloroplast transit peptide showed the highest average endoglucanase activity and protein accumulation up to 4.5% total soluble protein. Cel5A-CBM6 was targeted to the chloroplast and accumulated up to 5.2% total soluble protein. In terms of the direct conversion of plant tissue into free sugar, the Cel5A-CBM6 transgenic plant was 33% more efficient than the Cel5A transgenic plant. The protein stability of Cel5A and Cel5A-CBM6 in lyophilized leaf material is an additional advantage in the bioconversion process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aden A, Ruth M, Ibsen K, Jechura J, Neeves K, Sheehan J, Wallace B (2002) Lignocellulosic biomass to ethanol process design and economics utilizing co-current dilute acid prehydrolysis and enzymatic hydrolysis for corn stover. NREL/TP–510–32438. National Renewable Energy Laboratory, Golden

  • Auffray C, Rougeon F (1980) Purification of mouse immunoglobulin heavy-chain messenger RNAs from total myeloma tumor RNA. Eur J Biochem 107(2):303–314

    Article  PubMed  CAS  Google Scholar 

  • Bae H-J, Turcotte G, Chamberland H, Karita S, Vezina L-P (2003) A comparative study between an endoglucanase IV and its fused protein complex Cel5-CBM6. FEMS Microbiol Lett 227:175–181

    Article  PubMed  CAS  Google Scholar 

  • Bae HJ, Lee DS, Hwang I (2006a) Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J Exp Bot 57(1):161–169

    Google Scholar 

  • Bae HJ, Hwang I, Laberge S, Turcotte G (2006b) Transgenic plants expressing cellulase for autohydrolysis of cellulose components and method for production of soluble sugar. PCT/KR2005/002494

  • Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13(1):25–58

    Google Scholar 

  • Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr Res 113:291–299

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  PubMed  CAS  Google Scholar 

  • Chhabra SR, Shockley KR, Conners SB, Scott K, Wolfinger RD, Kelly RM (2003) Carbohydrate-induced differential gene expression patterns in the hyperthermophilic bacterium Thermotoga maritima. J Biol Chem 278(9):7540–7552

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Hooker BS, Anderson DB, Thomas SR (2000a) Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Res 9(1):43–54

    Article  PubMed  CAS  Google Scholar 

  • Dai Z, Hooker BS, Anderson DB, Thomas SR (2000b) Improved plant-based production of E1 endoglucanase using potato: expression optimization and tissue targeting. Mol Breed 6:277–285

    Article  CAS  Google Scholar 

  • Dai Z, Hooker BS, Quesenberry RD, Thomas SR (2005) Optimization of Acidothermus cellulolyticus endoglucanase (E1) production in transgenic tobacco plants by Transcriptional, Post-transcription and Post-translational Modification. Transgenic Res 14(5):627–643

    Article  PubMed  CAS  Google Scholar 

  • Helmer G, Casadaban M, Bevan M, Kayes L, Chilton MD (1984) A new chimeric gene as a marker for plant transformation: the expression of Escherichia coli b-galactosidase in sunflower and tobacco cells. Nat Biotechnol 6:520–527

    Article  Google Scholar 

  • Hood EE, Love R, Lane J, Bray J, Clough R, Pappu K, Drees C, Hood KR, Yoon S, Ahmad A, Howard JA (2007) Subcellular targeting is a key condition for high-level accumulation of cellulase protein in transgenic maize seed. Plant Biotechnol J 5(6):709–719

    Article  PubMed  CAS  Google Scholar 

  • Horn ME, Woodard SL, Howard JA (2004) Plant molecular farming: systems and products. Plant Cell Rep 22(10):711–720

    Article  PubMed  CAS  Google Scholar 

  • Jin R, Richter S, Zhong R, Lamppa GK (2003) Expression and import of an active cellulase from a thermophilic bacterium into the chloroplast both in vitro and in vivo. Plant Mol Biol 51(4):493–507

    Article  PubMed  CAS  Google Scholar 

  • Jung S, Kim S, Bae H, Lim HS, Bae HJ (2010) Expression of thermostable bacterial b-glucosidase (BglB) in transgenic tobacco plants. Bioresour Technol 101(18):7155–7161

    Article  PubMed  Google Scholar 

  • Kawazu T, Sun J-L, Shibata M, Kimura T, Sakka K, Ohmiya K (1999) Expression of a bacterial endoglucanase gene in tobacco increases digestibility of its cell wall fibers. J Biosci Bioeng 88(4):421–425

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Lee DS, Choi IS, Ahn SJ, Kim YH, Bae HJ (2010) Arabidopsis thaliana rubisco small subunit transit peptide increases the accumulation of Thermotoga maritima endoglucanase Cel5A in chloroplasts of transgenic tobacco plants. Transgenic Res 19:489–497

    Article  PubMed  CAS  Google Scholar 

  • Lemos MA, Teixeira JA, Domingues MRM, Mota M, Gama FM (2003) The enhancement of the cellulolytic activity of cellobiohydrolase I and endoglucanase by the addition of cellulose binding domains derived from Trichoderma reesei. Enzyme Microb Technol 32:35–40

    Article  CAS  Google Scholar 

  • Levy I, Shoseyov O (2002) Cellulose-binding domains: biotechnological applications. Biotechnol Adv 20:191–213

    Article  PubMed  CAS  Google Scholar 

  • Mahadevan SA, Wi SG, Lee DS, Bae HJ (2008) Site-directed mutagenesis and CBM engineering of Cel5A (Thermotoga maritima). FEMS Microbiol Lett 287(2):205–211

    Article  PubMed  CAS  Google Scholar 

  • Miller GL, Blum R, Glennom WE, Burton AL (1960) Measurement of carboxymethycellulases activity. Anal Biochem 1(2):127–132

    Article  CAS  Google Scholar 

  • Montalvo-Rodriguez R, Haseltine C, Huess-LaRossa K, Clemente T, Soto J, Staswick P, Blum P (2000) Autohydrolysis of plant polysaccharides using transgenic hyperthermophilic enzymes. Biotechnol Bioeng 70(2):151–159

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15(3):473–497

    Google Scholar 

  • Oraby H, Venkatesh B, Dale B, Ahmad R, Ransom C, Oehmke J, Sticklen M (2007) Enhanced conversion of plant biomass into glucose using transgenic rice-produced endoglucanase for cellulosic ethanol. Transgenic Res 16(6):739–749

    Article  PubMed  CAS  Google Scholar 

  • Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M (2007) Heterologous Acidothermus cellulolyticus 1, 4-β-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. Appl Biochem Biotechnol 137–140(1–12):207–219

    Article  PubMed  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17(3):315–319

    Article  PubMed  CAS  Google Scholar 

  • Sticklen M (2008) Plant genetic engineering for biofuel production: Towards affordable cellulosic ethanol. Nat Rev Genet 9(6):433–443

    Article  PubMed  CAS  Google Scholar 

  • Taylor LE 2nd, Dai Z, Decker SR, Brunecky R, Adney WS, Ding SY, Himmel ME (2008) Heterologous expression of glycosyl hydrolases in planta: a new departure for biofuels. Trends Biotechnol 26(8):413–424

    Article  PubMed  CAS  Google Scholar 

  • Tomme P, Warren RA, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81

    Article  PubMed  CAS  Google Scholar 

  • Twyman RM, Stoger E, Schillberg S, Christou P, Fischer R (2003) Molecular farming in plants: host systems and expression technology. Trends Biotechnol 21(12):570–578

    Article  PubMed  CAS  Google Scholar 

  • Ziegelhoffer T, Raasch JA, Austin-Phillips S (2001) Dramatic effects of truncation and sub-cellular targeting on the accumulation of recombinant microbial cellulase in tobacco. Mol Breed 8(2):147–158

    Article  CAS  Google Scholar 

  • Ziegler MT, Thomas SR, Danna KJ (2000) Accumulation of a thermostable endo-1, 4-β-D-glucanase in the apoplast of Arabidopsis thaliana leaves. Mol Breed 6(1):37–46

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Project No. 2010-0020141) to H.-J. Bae and by the World Class University project of the Ministry of Science and Technology of Korea (R31-2009-000-20025-0). SAM is grateful for funding through the BK21 program provided by the Ministry of Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyeun-Jong Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahadevan, S.A., Wi, S.G., Kim, Y.O. et al. In planta differential targeting analysis of Thermotoga maritima Cel5A and CBM6-engineered Cel5A for autohydrolysis. Transgenic Res 20, 877–886 (2011). https://doi.org/10.1007/s11248-010-9464-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-010-9464-8

Keywords

Navigation