Skip to main content
Log in

In vivo characterization of plant promoter element interaction using synthetic promoters

  • Original Paper
  • Published:
Transgenic Research Aims and scope Submit manuscript

Abstract

Short directly-repeated (DR) DNA enhancer elements of plant viral origin were analyzed for their ability, both individually and in combination, to influence in vivo transcription when inserted upstream from a minimal CaMV35S promoter. Synthetic promoters containing multiple copies and/or combinations of DR cassettes were tested for their effect upon reporter gene (luciferase) expression using an Agrobacteria-based leaf-infiltration transient assay and within stably transformed plants (Nicotiana tabacum). Transgenic plants harboring constructs containing different numbers or combinations of DR cassettes were further tested to look for tissue-specific expression patterns and potential promoter response to the infiltration process employed during transient expression. Multimerization of DR elements produced enhancer activity that was in general additive, increasing reporter activity in direct proportion to the number of DR cassettes within the test promoter. In contrast, combinations of different DR cassettes often functioned synergistically, producing reporter enhancement markedly greater then the sum of the combined DR activities. Several of the DR constructs responded to Agrobacteria (lacking T-DNA) infiltration of transgenic leaves by an induction (2 elements) or reduction (1 element) in reporter activity. Combinations of DR cassettes producing the strongest enhancement of reporter activity were used to create two synthetic promoters (SynPro3 and SynPro5) that drive leaf reporter activities at levels comparable to the CaMV35S promoter. Characterization of these synthetic promoters in transformed tobacco showed strong reporter expression at all stages of development and in most tissues. The arrangement of DR elements within SynPro3 and SynPro5 appears to play a role in defining tissue-specificity of expression and/or Agrobacteria-infusion responsiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Agst :

Agropine synthase terminator

CaMV35S:

Cauliflower Mosaic Virus 35S promoter

HcPro:

Viral Helper component Protein (suppressor of silencing)

GUSi:

Intron-modified β-Glucuronidase

IM:

Infiltration media

FLUC:

Firefly (Photinus pyralis) luciferase

FiLUC:

Intron modified Firefly luciferase gene

Nost :

Nopaline synthase terminator

NptII :

Neomycin phosphotransferase II

pAg7:

Gene 7 terminator

PClSV:

Peanut chlorotic streak virus (promoter)

PHV:

Pepper Huasteco Virus

Pnos:

Nopaline synthase promoter

PTGS:

Post transcriptional gene silencing

PVY:

Potato Virus Y

R0 :

Primary transgenic line

R1 :

Progeny of self fertilized R0 plants

RiLUC:

Renilla reniformis (sea pansy) intron-modified luciferase gene

RLUC:

Intron modified Renilla reniformis luciferase

RLU:

Relative Light Units

TrAP:

Transcription Activating Protein

35St :

CaMV35S terminator

References

  • Akama K, Shiraishi H, Ohta S, Nakamura K, Okada K, Shimura Y (1992) Efficient transformation of Arabidopsis thaliana: comparison of the efficiencies with various organs, plant ecotypes and Agrobacterium strains. Plant Cell Rep 12:7–11

    Article  CAS  Google Scholar 

  • Bechtold N, Ellis J, Pelletier G (1993) In planta Agrobacterium mediated gene transfer of adult Arabidopsis thaliana plants. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales 316:1194–1199

    CAS  Google Scholar 

  • Becker D, Kemper E, Schell J, Masterson R (1992) New plant binary vectors with selectable markers located proximal to the left T-DNA border. Plant Mol Biol 20:1195–1197

    Article  PubMed  CAS  Google Scholar 

  • Benfey P, Chua N (1990) The cauliflower mosaic virus 35S promoter: combinatorial regulation of transcription in plants. Science 250:959–966

    Article  PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1989) The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. Embo J 8:2195–2202

    PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990a) Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. Embo J 9:1685–1696

    PubMed  CAS  Google Scholar 

  • Benfey PN, Ren L, Chua NH (1990b) Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. Embo J 9:1677–1684

    PubMed  CAS  Google Scholar 

  • Bhattacharyya S, Pattanaik S, Maiti I (2003) Intron-mediated enhancement of gene expression in transgenic plants using chimeric constructs composed of the Peanut chlorotic streak virus (PClSV) promoter-leader and the antisense orientation of PClSV ORF VII (p7R). Planta 218:115–124

    Article  PubMed  CAS  Google Scholar 

  • Bhullar S, Chakravarthy S, Advani S, Datta S, Pental D, Burma PK (2003) Strategies for development of functionally equivalent promoters with minimum sequence homology for transgene expression in plants: cis-elements in a novel DNA context versus domain swapping. Plant Physiol 132:988–998

    Article  PubMed  CAS  Google Scholar 

  • Busk PK, Jensen AB, Pages M (1997) Regulatory elements in vivo in the promoter of the abscisic acid responsive gene rab17 from maize. Plant J 11:1285–1295

    Article  PubMed  CAS  Google Scholar 

  • Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T (2005) MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics 21:2933–2942

    Article  PubMed  CAS  Google Scholar 

  • Cazzonelli CI, Burke J, Velten J (2005a) Functional characterization of the geminiviral conserved late element (CLE) in uninfected tobacco. Plant Mol Biol 58:465–481

    Article  PubMed  CAS  Google Scholar 

  • Cazzonelli CI, McCallum EJ, Lee R, Botella JR (2005b) Characterization of a strong, constitutive mung bean (Vigna radiata L.) promoter with a complex mode of regulation in planta. Transgenic Res 14:941–967

    Article  PubMed  CAS  Google Scholar 

  • Cazzonelli CI, Velten J (2003) Construction and testing of an intron-containing luciferase reporter gene from Renilla reniformis. Plant Mol Biol Rep 21:271–280

    Article  CAS  Google Scholar 

  • Cazzonelli CI, Velten J (2006) An in vivo, luciferase-based, Agrobacterium-infiltration assay system: implications for post-transcriptional gene silencing. Planta 224:582–597

    Article  PubMed  CAS  Google Scholar 

  • Chaturvedi CP, Sawant SV, Kiran K, Mehrotra R, Lodhi N, Ansari SA, Tuli R (2005) Analysis of polarity in the expression from a multifactorial bidirectional promoter designed for high-level expression of transgenes in plants. J Biotechnol 123:1–12

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Moran P, Maslyar D (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15:373–381

    Article  PubMed  CAS  Google Scholar 

  • Day M, Ashurst J, Mathias S, Watts J, Wilson T, Dixon R (1993) Plant viral leaders influence expression of a reporter gene in tobacco. Plant Mol Biol 23:97–109

    Article  CAS  Google Scholar 

  • Ebert PR, Ha SB, An G (1987) Identification of an essential upstream element in the nopaline synthase promoter by stable and transient assays. Proc Natl Acad Sci USA 84:5745–5749

    Article  PubMed  CAS  Google Scholar 

  • Fang RX, Nagy F, Sivasubramaniam S, Chua NH (1989) Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell 1:141–150

    Article  PubMed  CAS  Google Scholar 

  • Foster E, Hattori J, Labbe H, Ouellet T, Fobert PR, James LE, Iyer VN, Miki BL (1999) A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging. Plant Mol Biol 41:45–55

    Article  PubMed  CAS  Google Scholar 

  • Geisler M, Kleczkowski LA, Karpinski S (2006) A universal algorithm for genome-wide in silicio identification of biologically significant gene promoter putative cis-regulatory-elements; identification of new elements for reactive oxygen species and sucrose signaling in Arabidopsis. Plant J 45:384–398

    Article  PubMed  CAS  Google Scholar 

  • Guevara-Garcia A, Mosqueda-Cano G, Arguello-Astorga G, Simpson J, Herrera-Estrella L (1993) Tissue-specific and wound-inducible pattern of expression of the mannopine synthase promoter is determined by the interaction between positive and negative cis-regulatory elements. Plant J 4:495–505

    Article  PubMed  CAS  Google Scholar 

  • Guilifoyle TJ (1997) The structure of plant gene promoters. In: Setlow JK (ed) Genetic engineering. Plenum Press, New York, pp. 15–47

    Google Scholar 

  • Gurr SJ, Rushton PJ (2005) Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 23:275–282

    Article  PubMed  CAS  Google Scholar 

  • Hajdukiewicz P, Svab Z, Maliga P (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol 25:989–994

    Article  PubMed  CAS  Google Scholar 

  • Higo K, Ugawa Y, Iwamoto M, Korenaga T (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27:297–300

    Article  PubMed  CAS  Google Scholar 

  • Horsch R, Fry J, Hoffman N, Neidermeyer J, Rogers S, Fraley R (1988) Leaf disc transformation. In: Gelvin S, Schilperoort R (eds) Plant molecular biology manual. Kluwer Academic Publishers, Belgium, pp. 1–9

    Google Scholar 

  • Ishige F, Takaichi M, Foster R, Chua NH, Oeda K (1999) A G-box motif (GCCACGTGCC) tetramer confers high-level constitutive expression in dicot and monocot plants. Plant J Cell Mol Biol 18:443–448

    CAS  Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) GUS fusions: b-glucoronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Joshi CP (1987) An inspection of the domain between putative TATA box and translation start site in 79 plant genes. Nucleic Acids Res 15:6643–6653

    Article  PubMed  CAS  Google Scholar 

  • Kim T, Balish RS, Heaton ACP, KcKinney EC, Dhankher OP, Meagher RB (2005) Engineering a root-specific, repressor-operator gene complex. Plant Biotech J 3:571–582

    Article  CAS  Google Scholar 

  • Kononowicz H, Wang YE, Habeck LL, Gelvin SB (1992) Subdomains of the octopine synthase upstream activating element direct cell-specific expression in transgenic tobacco plants. Plant Cell 4:17–27

    Article  PubMed  CAS  Google Scholar 

  • Krawczyk S, Corinna T, Niggeweg R, Gatz C (2002) Analysis of the spacing between the two palindromes of activation sequence-1 with respect to binding to different TGA factors and transcriptional potential. Nucleic Acids Res 30:775–781

    Article  PubMed  CAS  Google Scholar 

  • Leyfer D, Weng Z (2005) Genome-wide decoding of hierarchical modular structure of transcriptional regulation by cis-element and expression clustering. Bioinformatics 21(Suppl 2):ii197–ii203

    Article  PubMed  CAS  Google Scholar 

  • Li ZT, Jayasankar S, Gray DJ (2004) Bi-directional duplex promoters with duplicated enhancers significantly increase transgene expression in grape and tobacco. Transgenic Res 13:143–154

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Ulmasov T, Xiangyang S, Hagen G, Guilfoyle T (1994) Soybean GH3 promoter contains multiple auxin-inducible elements. Plant Cell 6:645–657

    Article  PubMed  CAS  Google Scholar 

  • Luehrsen K, Walbot V (1993) Firefly luciferase as a reporter gene. Promega notes 44:24–29

    Google Scholar 

  • Maiti IB, Shepherd RJ (1998) Isolation and expression analysis of peanut chlorotic streak caulimovirus (PClSV) full-length transcript (FLt) promoter in transgenic plants. Biochem Biophys Res Commun 244:440–444

    Article  PubMed  CAS  Google Scholar 

  • Mankin S, Allen G, Thompson W (1997) Introduction of a plant intron into the luciferase gene of Photinus pyralis. Plant Mol Biol Rep 15:186–196

    Article  CAS  Google Scholar 

  • Menkens AE, Schindler U, Cashmore AR (1995) The G-box: a ubiquitous regulatory DNA element in plants bound by the GBF family of bZIP proteins. Trends Biochem Sci 20:506–510

    Article  PubMed  CAS  Google Scholar 

  • Mitsuhara I, Ugaki M, Hirochika H, Ohshima M, Murakami T, Gotoh Y, Katayose Y, Nakamura S, Honkura R, Nishimiya S, Ueno K, Mochizuki A, Tanimoto H, Tsugawa H, Otsuki Y, Ohashi Y (1996) Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledenous and monocotyledonous plants. Plant Cell Physiol 37:49–59

    PubMed  CAS  Google Scholar 

  • Mohanty B, Krishnan SP, Swarup S, Bajic VB (2005) Detection and preliminary analysis of motifs in promoters of anaerobically induced genes of different plant species. Ann Bot (Lond) 96:669–681

    Article  CAS  Google Scholar 

  • Molina C, Grotewold E (2005) Genome wide analysis of Arabidopsis core promoters. BMC Genomics 6:25

    Article  PubMed  CAS  Google Scholar 

  • Nakabayashi K, Okamoto M, Koshiba T, Kamiya Y, Nambara E (2005) Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J 41:697–709

    Article  PubMed  CAS  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Narusaka M, Shinozaki K, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  PubMed  CAS  Google Scholar 

  • Ni M, Cui D, Einstein J, Narasimhulu S, Vergara Q, Gelvin S (1995) Strength and tissue specificity of chimeric promoters derived from the octopine and mannopine synthase genes. The Plant J 7:661–676

    Article  CAS  Google Scholar 

  • Odell JT, Nagy F, Chua NH (1985) Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature 313:810–812

    Article  PubMed  CAS  Google Scholar 

  • Padidam M (2003) Chemically regulated gene expression in plants. Curr Opin Plant Biol 6:169–177

    Article  PubMed  CAS  Google Scholar 

  • Pauli S, Rothnie HM, Chen G, He X, Hohn T (2004) The cauliflower mosaic virus 35S promoter extends into the transcribed region. J Virol 78:12120–12128

    Article  PubMed  CAS  Google Scholar 

  • Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M, Minovitsky S, Dubchak I, Holt A, Lewis KD, Plajzer-Frick I, Akiyama J, De Val S, Afzal V, Black BL, Couronne O, Eisen MB, Visel A, Rubin EM (2006) In vivo enhancer analysis of human conserved non-coding sequences. Nature 444:499–502

    Article  PubMed  CAS  Google Scholar 

  • Rombauts S, Florquin K, Lescot M, Marchal K, Rouze P, van de Peer Y (2003) Computational approaches to identify promoters and cis-regulatory elements in plant genomes. Plant Physiol 132:1162–1176

    Article  PubMed  CAS  Google Scholar 

  • Roth FP, Hughes JD, Estep PW, Church GM (1998) Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation. Nat Biotechnol 16:939–945

    Article  PubMed  CAS  Google Scholar 

  • Ruiz-Medrano R, Guevara-Gonzalez RG, Arguello-Astorga GR, Monsalve-Fonnegra Z, Herrera-Estrella LR, Rivera-Bustamante RF (1999) Identification of a sequence element involved in AC2-mediated transactivation of the pepper huasteco virus coat protein gene. Virology 253:162–169

    Article  PubMed  CAS  Google Scholar 

  • Rushton P, Reinstadler A, Lipka V, Bernadette L, Somssich I (2002) Synthetic plant promoters containing defined regulatory elements provide novel insights into pathogen- and wound-induced signalling. The Plant Cell 14:749–762

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Russell D (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • Sawant S, Singh PK, Mandanala R, Tuli R (2001) Designing of an artificial expression cassette fro the high-level expression of transgenes in plants. TAG Theor Appl Genetics 102:635–644

    Article  CAS  Google Scholar 

  • Sawant SV, Kiran K, Mehrotra R, Chaturvedi CP, Ansari SA, Singh P, Lodhi N, Tuli R (2005) A variety of synergistic and antagonistic interactions mediated by cis-acting DNA motifs regulate gene expression in plant cells and modulate stability of the transcription complex formed on a basal promoter. J Exp Bot 56:2345–2353

    Article  PubMed  CAS  Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Sherf B, Navarro S, Hannah R, Wood K (1996) Dual-LuciferaseTM reporter assay: an advanced co-reporter technology integrating firefly and Renilla luciferase assays. Promega Notes 57:2–9

    Google Scholar 

  • Strompen G, Gruner R, Pfitzner UM (1998) An as-1-like motif controls the level of expression of the gene for the pathogenesis-related protein 1a from tobacco. Plant Mol Biol 37:871–883

    Article  PubMed  CAS  Google Scholar 

  • Sunter G, Bisaro DM (2003) Identification of a minimal sequence required for activation of the tomato golden mosaic virus coat protein promoter in protoplasts. Virology 305:452–462

    Article  PubMed  CAS  Google Scholar 

  • Svab Z, Hajdukiewicz P, Maliga P (1995). Generation of transgenic tobacco plants by cocultivation of leaf disks with Agrobacterium pPZP binary vectors. In: Maliga P (ed) Methods in plant molecular biology: a laboratory course manual. Cold Spring Harbor Laboratory Press, Plainview NY, pp55–77

    Google Scholar 

  • Thijs G, Marchal K, Lescot M, Rombauts S, De Moor B, Rouze P, Moreau Y (2002) A Gibbs sampling method to detect overrepresented motifs in the upstream regions of coexpressed genes. J Comput Biol 9:447–464

    Article  PubMed  CAS  Google Scholar 

  • Thum KE, Shin MJ, Palenchar PM, Kouranov A, Coruzzi GM (2004) Genome-wide investigation of light and carbon signaling interactions in Arabidopsis. Genome Biol 5:R10

    Article  PubMed  Google Scholar 

  • Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant cell 15:533–543

    Article  PubMed  CAS  Google Scholar 

  • Tyagi AK (2001) Plant genes and their expression. Current Sci 80:161–169

    CAS  Google Scholar 

  • Ulmasov T, Hagen G, Guilfoyle TJ (1997) ARF1, a transcription factor that binds to auxin response elements. Science 276:1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Ursin V, Shewmaker C (1993) Demonstration of a senescence component in the regulation of the mannopine synthase promoter. Plant Physiol 102:1033–1036

    PubMed  CAS  Google Scholar 

  • van der Zaal BJ, Droog FNJ, Pieterse FJ, Hooykaas PJJ (1996) Auxin-sensitive elements from promoters of tabacco GST genes and a consensus as-1-like element differ only in relative strength. Plant Physiol 110:79–88

    Article  PubMed  Google Scholar 

  • Velten J, Morey KJ, Cazzonelli CI (2005) Plant viral intergenic DNA sequence repeats with transcription enhancing activity. Virol J 2:16–26

    Article  PubMed  CAS  Google Scholar 

  • Velten J, Velten L, Hain R, Schell J (1984) Isolation of a dual plant promoter fragment from the Ti plasmid of Agrobacterium tumefaciens. EMBO J Eur Mol Biol Organ 3:2723–2730

    CAS  Google Scholar 

  • Venter M (2007) Synthetic promoters: genetic control through cis engineering. Trends Plant Sci 12:118–124

    Article  PubMed  CAS  Google Scholar 

  • Venter M, Botha FC (2004) Promoter analysis and transcription profiling: integration of genetic data enhances understanding of gene expression. Physiol Plant 120:74–83

    Article  PubMed  CAS  Google Scholar 

  • Walkerpeach C, Velten J (1994) Agrobacterium-mediated gene transfer to plant cells cointegrate and binary vector systems. In: Gelvin S, Schilperoort R (eds) Plant molecular biology manual. Kluwer Academic, Dordrecht, pp. B1:1–B1:19

    Google Scholar 

  • Wan J, Dunning FM, Bent AF (2002) Probing plant-pathogen interactions and downstream defense signaling using DNA microarrays. Funct Integr Genomics 2:259–273

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Zhou X, Wang X (2003) Chemically regulated expression systems and their applications in transgenic plants. Transgenic Res 12:529–540

    Article  PubMed  CAS  Google Scholar 

  • Wu K, Hu M, Martin T, Wang Y, Li X-Q, Tian L, Brown D, Miki B (2003) The cryptic cnhancer elements of the tCUP promoter. Plant Mol Biol 51:351–362

    Article  PubMed  CAS  Google Scholar 

  • Xiao K, Zhang C, Harrison M, Wang Z (2005) Isolation and characterisation of a novel plant promoter that directs strong constitutive expression of transgenes in plants. Mol Breeding 15:221–231

    Article  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (1994) A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6:251–264

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  PubMed  CAS  Google Scholar 

  • Zhu Q, Dabi T, Lamb C (1995) TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro. The Plant Cell 7:1681–1689

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our appreciation goes out to Drs. John Burke, Junping Chen and Zhanguo Xin for critical reading of the manuscript, Erick Armijo and Derek Pugh for helping with luciferase and GUS assays, Kay McCrary and DeeDee Laumbach for tobacco transformation and David Wheeler for excellent technical assistance. Mention of a commercial or proprietary product does not constitute an endorsement by the USDA. USDA offers its programs to all eligible persons regardless of race, color, age, sex, or national origin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Velten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cazzonelli, C.I., Velten, J. In vivo characterization of plant promoter element interaction using synthetic promoters. Transgenic Res 17, 437–457 (2008). https://doi.org/10.1007/s11248-007-9117-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11248-007-9117-8

Keywords

Navigation