Skip to main content
Log in

Theoretical and FTIR Investigations of the Acetonitrile Hydrogenation Pathways on Platinum

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The hydrogenation reaction of acetonitrile adsorbed on a platinum surface to produce amines has been investigated by theoretical and in situ infrared studies. An energetic, kinetics and vibrational analysis have been performed to unravel the elementary steps of the reaction and to clarify the mechanism. The comparison with the experiments allows us to identify an imine as a crucial intermediate for this reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Henkel KD (2007) Ullmann’s encyclopedia of industrial chemistry, vol 2, 7th edn. Wiley, New York

    Google Scholar 

  2. De Bellefon C, Fouilloux P (1994) Homogeneous and heterogeneous hydrogenation of nitriles in a liquid phase: chemical, mechanistic, and catalytic aspects. Catal Rev 36(3):459–506

    Article  Google Scholar 

  3. Sabatier P, Senderens JB (1909) C R Acad Sci 140:1553

    Google Scholar 

  4. Braun JV, Blessing G, Zobel F (1923) Katalytische Hydrierungen unter Druck bei Gegenwart von Nickelsalzen, VI: Nitrile. Berichte der deutschen chemischen Gesellschaft (A and B Series) 56(8):1988–2001

    Article  Google Scholar 

  5. Greenfield H (1967) Catalytic hydrogenation of butyronitrile. Ind Eng Chem Prod Res Dev 6(2):142–144

    Article  CAS  Google Scholar 

  6. Huang Y, Sachtler WM (1999) On the mechanism of catalytic hydrogenation of nitriles to amines over supported metal catalysts. Appl Catal A 182(2):365–378

    Article  CAS  Google Scholar 

  7. Huang Y, Sachtler WM (1999) Catalytic hydrogenation of nitriles over supported mono-and bimetallic catalysts. J Catal 188(1):215–225

    Article  CAS  Google Scholar 

  8. Schärringer P, Müller TE, Lercher JA (2008) Investigations into the mechanism of the liquid-phase hydrogenation of nitriles over Raney-Co catalysts. J Catal 253(1):167–179

    Article  CAS  Google Scholar 

  9. Schärringer P, Müller TE, Jentys A, Lercher JA (2009) Identification of reaction intermediates during hydrogenation of CD3CN on Raney-Co. J Catal 263(1):34–41

    Article  CAS  Google Scholar 

  10. Huang Y, Sachtler WM (1999) Concerted reaction mechanism in deuteration and H/D exchange of nitriles over transition metals. J Catal 184(1):247–261

    Article  CAS  Google Scholar 

  11. Huang Y, Sachtler WM (2000) Intermolecular hydrogen transfer in nitrile hydrogenation over transition metal catalysts. J Catal 190(1):69–74

    Article  CAS  Google Scholar 

  12. Huang Y, Sachtler WM (1998) H/D exchange of amines and acetonitrile over transition metal catalysts. J Phys Chem B 102(34):6558–6565

    Article  CAS  Google Scholar 

  13. Ortiz-Hernandez I, Williams CT (2007) In situ studies of butyronitrile adsorption and hydrogenation on Pt/Al2O3 using attenuated total reflection infrared spectroscopy. Langmuir 23(6):3172–3178

    Article  CAS  PubMed  Google Scholar 

  14. Segobia DJ, Trasarti AF, Apesteguía CR (2012) Hydrogenation of nitriles to primary amines on metal-supported catalysts: highly selective conversion of butyronitrile to n-butylamine. Appl Catal A 445:69–75

    Article  CAS  Google Scholar 

  15. Bigot B, Delbecq F, Milet A, Peuch VH (1996) Nitriles and hydrogen on a nickel catalyst: theoretical evidence of a process competing with the total hydrogenation reaction. J Catal 159(2):383–393

    Article  CAS  Google Scholar 

  16. Carrión MC, Manzano BR, Jalón FA, Fuentes-Perujo I, Maireles-Torres P, Rodríguez-Castellón E, Jiménez-López A (2005) Gas-phase hydrogenation of acetonitrile over Pt and Pt–Pd supported on mesoporous solids: influence of the metallic precursor. Appl Catal A 288(1–2):34–42

    Article  CAS  Google Scholar 

  17. Barrault J, Pouilloux Y (1997) Synthesis of fatty amines. Selectivity control in presence of multifunctional catalysts. Catal Today 37(2):137–153

    Article  CAS  Google Scholar 

  18. Ortiz-Hernandez I, Owens DJ, Strunk MR, Williams CT (2006) Multivariate analysis of ATR–IR spectroscopic data: applications to the solid–liquid catalytic interface. Langmuir 22(6):2629–2639

    Article  CAS  PubMed  Google Scholar 

  19. Ortiz-Hernandez I, Williams CT (2003) In situ investigation of solid–liquid catalytic interfaces by attenuated total reflection infrared spectroscopy. Langmuir 19(7):2956–2962

    Article  CAS  Google Scholar 

  20. Bigot B, Delbecq F, Milet A, Peuch VH (1996) Nitriles and hydrogen on a nickel catalyst: theoretical evidence of a process competing with the total hydrogenation reaction. J Catal 159(2):383–393

    Article  CAS  Google Scholar 

  21. Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169

    Article  CAS  Google Scholar 

  22. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev b 59(3):1758

    Article  CAS  Google Scholar 

  23. Blöchl PE, Jepsen O, Andersen OK (1994) Improved tetrahedron method for Brillouin-zone integrations. Phys Rev B 49(23):16223

    Article  Google Scholar 

  24. Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953

    Article  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys Rev Lett 78(7):1396

    Article  Google Scholar 

  26. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865

    Article  CAS  Google Scholar 

  27. Kittel C (1997) Introducción a la física del estado sólido. Edición en español, Editorial Reverté, S.A.

    Google Scholar 

  28. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188

    Article  Google Scholar 

  29. Henkelman G, Uberuaga BP, Jónsson H (2000) A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22):9901–9904

    Article  CAS  Google Scholar 

  30. Henkelman G, Jónsson H (2000) Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J Chem Phys 113(22):9978–9985

    Article  CAS  Google Scholar 

  31. Aguirre A, Berli CL, Collins SE (2017) ATR-FTIR spectrokinetic analysis of the CO adsorption and oxidation at water/platinum interface. Catal Today 283:127–133

    Article  CAS  Google Scholar 

  32. Markovits A, Minot C (2003) Theoretical study of the acetonitrile flip-flop with the electric field orientation: adsorption on a Pt (111) electrode surface. Catal Lett 91(3–4):225–234

    Article  CAS  Google Scholar 

  33. Pašti IA, Marković A, Gavrilov N, Mentus SV (2016) Adsorption of acetonitrile on platinum and its effects on oxygen reduction reaction in acidic aqueous solutions—combined theoretical and experimental study. Electrocatalysis 7(3):235–248

    Article  CAS  Google Scholar 

  34. Shayeghi A, Krähling S, Hörtz P, Johnston RL, Heard CJ, Schäfer R (2017) Adsorption of acetonitrile, benzene, and benzonitrile on Pt (111): single crystal adsorption calorimetry and density functional theory. J Phys Chem C 121(39):21354–21363

    Article  CAS  Google Scholar 

  35. Morrison R, Boyd R (1998) Química orgánica, 5th edn. New York University, Pearson

    Google Scholar 

  36. Marzocchi MP, Dobos S (1974) Infrared spectra and crystal structure of CH3CN and CD3CN. Polarization and intensity measurements. Spectrochim Acta Part A 30(7):1437–1444

    Article  Google Scholar 

  37. Busca G, Montanari T, Bevilacqua M, Finocchio E (2008) Removal and recovery of nitriles from gaseous streams: an IR study of acetonitrile adsorption on and desorption from inorganic solids. Colloids Surf A 320(1–3):205–212

    Article  CAS  Google Scholar 

  38. Marinković NS, Hecht M, Loring JS, Fawcett WR (1996) A SNIFTIRS study of the diffuse double layer at single crystal platinum electrodes in acetonitrile. Electrochim Acta 41(5):641–651

    Article  Google Scholar 

  39. Sexton BA, Avery NR (1983) Coordination of acetonitrile (CH3CN) to platinum (111): evidence for an η2 (C, N) species. Surf Sci 129(1):21–36

    Article  CAS  Google Scholar 

  40. Hubbard AT, Cao EY, Stern DA (1994) Surface analysis of electrodes by ultra-high vacuum techniques: acetonitrile solvent chemisorption at Pt (111). Electrochim Acta 39(8–9):1007–1014

    Article  CAS  Google Scholar 

  41. Morin S, Conway BE, Edens GJ, Weaver MJ (1997) The reactive chemisorption of acetonitrile on Pt (111) and Pt (100) electrodes as examined by in situ infrared spectroscopy. J Electroanal Chem 421(1–2):213–220

    Article  CAS  Google Scholar 

  42. Bagal DB, Bhanage BM (2015) Recent advances in transition metal-catalyzed hydrogenation of nitriles. Adv Synth Catal 357(5):883–900

    Article  CAS  Google Scholar 

  43. Zerecero-Silva P, Jimenez-Solar I, Crestani MG, Arévalo A, Barrios-Francisco R, García JJ (2009) Catalytic hydrogenation of aromatic nitriles and dinitriles with nickel compounds. Appl Catal A 363(1–2):230–234

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from ANPCyT PICT-2014-1084 and PICT-2014-0497, PIP-CONICET-2015-086CO and ASACTEI grant 00010-18-2014. LV thanks UNL for the granted fellowship. P.Q, E.S and S.C thank CONICET for continuous support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Quaino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2398 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogt, L., Schulte, E., Collins, S. et al. Theoretical and FTIR Investigations of the Acetonitrile Hydrogenation Pathways on Platinum. Top Catal 62, 1076–1085 (2019). https://doi.org/10.1007/s11244-019-01194-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-019-01194-x

Keywords

Navigation