Skip to main content
Log in

Adsorption of Acetonitrile on Platinum and its Effects on Oxygen Reduction Reaction in Acidic Aqueous Solutions—Combined Theoretical and Experimental Study

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Combined theoretical and experimental study of acetonitrile (AcN) adsorption on platinum was performed and its effects on the kinetics of oxygen reduction reaction in HClO4 and H2SO4 solutions were examined. Using periodic density functional theory calculations, it was shown that AcN molecule can interact with Pt surface either through the unsaturated π electron system or via lone electron pair of nitrogen atom. In both cases, adsorption energy decreases upon increasing coverage, while the modification of electronic structure of Pt surface is localized to the adsorption site. By combining the results of the DFT calculations with the results of blank cyclic voltammetry and rotating disk electrode voltammetry in O2-saturated solutions, it was concluded that the effects of AcN on Pt surface chemistry and ORR kinetics are primarily steric in nature. Resulting measured ORR activities of polycrystalline platinum in the presence of AcN are due to the combination of (i) suppression of (bi)sulfate adsorption (in H2SO4 solution), (ii) suppression of surface oxidation (in both H2SO4 an HClO4 solution), and (iii) site blockage by adsorbed AcN (or products of its electrochemical transformations).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J.C. Hemminger, E.L. Muetterties, G.A. Somorjai, J. Am. Chem. Soc. 101, 62 (1979)

    Article  CAS  Google Scholar 

  2. H. Angerstein-Kozlowska, B. Macdougall, B.E. Conway, J. Electroanal. Chem. 39, 287 (1972)

    Article  CAS  Google Scholar 

  3. B.A. Sexton, N.R. Avery, Surf. Sci. 129, 21 (1983)

    Article  CAS  Google Scholar 

  4. E.C. Ou, P.A. Young, P.R. Norton, Surf. Sci. 277, 123 (1992)

    Article  CAS  Google Scholar 

  5. N.S. Marinković, M. Hecht, J.S. Loring, W.R. Fawecett, Electrochim. Acta 41, 64 (1996)

    Google Scholar 

  6. S. Baldelli, G. Mailhot, P. Ross, Y.-R. Shen, G.A. Somorjai, J. Phys. Chem. B 105, 654 (2001)

    Article  CAS  Google Scholar 

  7. A. Markovits, C. Minot, Catal. Lett. 91, 225 (2003)

    Article  CAS  Google Scholar 

  8. B.E. Conway, B. MacDougall, H.A. Kozlowska, J. Chem. Soc., Faraday Trans. 1, 68, 1566 (1972)

  9. B.R. MacDougall, B.E. Conway, H.A. Kozlowska, J. Electroanal. Chem. 32, 15 (1971)

    Article  Google Scholar 

  10. B.E. Conway, H.A. Kozlowska, B.R. MacDougall, J. Electroanal. Chem. 39, 287 (1972)

    Article  Google Scholar 

  11. S. Morin, B.E. Conway, J. Electroanal. Chem. 376, 135 (1994)

    Article  CAS  Google Scholar 

  12. A.V. Rudnev, E.B. Molodkina, A.I. Danilov, Y.M. Polukarov, A. Berna, J.M. Feliu, Electrochim. Acta 54, 3692 (2009)

    Article  CAS  Google Scholar 

  13. A.V. Rudnev, E.B. Molodkina, A.I. Danilov, Y.M. Polukarov, J.M. Feliu, Electrochem. Commun. 10, 502 (2008)

    Article  CAS  Google Scholar 

  14. C. Song, J. Zang, PEM fuel cell electrocatalysts and catalyst layers, 1st edn. (Springer, London, 2008), pp. 289–329

    Google Scholar 

  15. M.Lj. Smiljanić, I.Lj. Srejić, V.M. Marinović , Z.Lj. Rakočević, S.B. Štrbac, Hem. Ind. 66, 327 (2012)

  16. I. Srejić, M. Smiljanić, Z. Rakočević, S. Štrbac, Int. J. Electrochem. Sci. 6, 3344 (2011)

    Google Scholar 

  17. J. Ge, J. St-Pierre, Y. Zhai, Electrochim. Acta 134, 272 (2014)

    Article  CAS  Google Scholar 

  18. Q. Li, C. Batchelor-McAuley, N.S. Lawrence, R.S. Hartshorne, R.G. Compton, J. Electroanal. Chem. 688, 328 (2013)

    Article  CAS  Google Scholar 

  19. V.R. Stamenkovic, B. Fowler, B.S. Mun, G. Wang, P.N. Ross, C.A. Lucas, N.M. Marković, Science 315, 493 (2007)

    Article  CAS  Google Scholar 

  20. V.R. Stamenkovic, B.S. Mun, M. Arenz, K.J.J. Mayrhofer, C.A. Lucas, G. Wang, P.N. Ross, N.M. Markovic, Nat. Mater. 6, 241 (2007)

    Article  CAS  Google Scholar 

  21. D. Strmcnik, M. Escudero-Escribano, K. Kodama, V.R. Stamenkovic, A. Cuesta, N.M. Marković, Nat. Chem. 2, 880 (2010)

    Article  CAS  Google Scholar 

  22. V. Tanasković, I.A. Pašti, N. Gavrilov, S.V. Mentus, J. Electroanal. Chem. 714–715, 11 (2014)

    Article  Google Scholar 

  23. G. Paolo et al., J. Phys. Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  24. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  25. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  26. N. Marzari, D. Vanderbilt, A. De Vita, M.C. Payne, Phys. Rev. Lett. 82, 3296 (1999)

    Article  CAS  Google Scholar 

  27. L. Bengtsson, Phys. Rev. B 59, 12301 (1999)

    Article  CAS  Google Scholar 

  28. D. Vasić, I. Pašti, N. Gavrilov, S. Mentus, Russ. J. Phys. Chem. A 87, 2214 (2013)

    Article  Google Scholar 

  29. D.D. Vasić Anićijević, V.M. Nikolić, M.P. Marčeta-Kaninski, I.A. Pašti, Int. J. Hydrog. Energy 38, 16071 (2013)

    Article  Google Scholar 

  30. R.F.W. Bader, Atoms in molecules: a quantum theory, 1st edn. (Oxford University Press, Oxford, 1994), pp. 1–458

    Google Scholar 

  31. G. Henkelman, A. Arnaldsson, H. Jónsson, Comp. Mater. Sci. 36, 354 (2006)

    Article  Google Scholar 

  32. K.-i. Karakida, T. Fukuyama, K. Kuchitsu, Bull. Chem. Soc. Jpn. 47, 299 (1974)

    Article  CAS  Google Scholar 

  33. P. Alston Steiner, W. Gordy, J. Mol. Spectrosc. 21, 291 (1966)

    Article  Google Scholar 

  34. A. Rodes, M.A. Zamakhchari, K. El Achi, J. Clavilier, J. Electroanal. Chem. 305, 115 (1991)

    Article  CAS  Google Scholar 

  35. W. Humphrey, A. Dalke, K. Schulten, J. Mol. Graphics 14, 33 (1996)

    Article  CAS  Google Scholar 

  36. L. Pettersson, A. Nilsson, Top. Catal. 57, 2 (2014)

    Article  CAS  Google Scholar 

  37. A. Nilsson, L.G.M. Pettersson, Surf. Sci. Rep. 55, 49 (2004)

    Article  CAS  Google Scholar 

  38. A. Nilsson, L.G.M. Pettersson, Model systems, in Catalysis, ed. by R. Rioux (Elsevier, Amsterdam, 2008), pp. 253–274

    Google Scholar 

  39. G. Blyholder, J. Phys. Chem. 68, 2772 (1964)

    Article  CAS  Google Scholar 

  40. M.J.S. Dewar, Bull. Soc. Chim. Fr. 18, C71 (1951)

    Google Scholar 

  41. J. Chatt, L.A. Duncanson, J. Chem. Soc. (Resumed) 0, 2939 (1953)

  42. A. Kokalj, J. Mol. Graph. Model. 17, 176 (1999)

    Article  CAS  Google Scholar 

  43. B. Hammer, J.K. Nørskov, Surf. Sci. 343, 211 (1995)

    Article  CAS  Google Scholar 

  44. V. Stamenkovic, B.S. Mun, K.J.J. Mayrhofer, P.N. Ross, N.M. Markovic, J. Rossmeisl, J. Greeley, J.K. Nørskov, Angew. Chem. Int. Ed. 45, 2897 (2006)

    Article  CAS  Google Scholar 

  45. N.M. Marković, P.N. Ross Jr., Surf. Sci. Rep. 45, 117 (2002)

    Article  Google Scholar 

  46. F. Dederichs, A. Petukhova, W. Daum, J. Phys. Chem. B 105, 5210 (2001)

    Article  CAS  Google Scholar 

  47. R.A. Gu, P.G. Cao, Y.H. Sun, Z.Q. Tian, J. Electroanal. Chem. 528, 121 (2002)

    Article  CAS  Google Scholar 

  48. G. Horányi, E.M. Rizmayer, J. Electroanal. Chem. Interfacial Electrochem. 113, 305 (1980)

    Article  Google Scholar 

  49. T.P. Mernagh, R.P. Cooney, J. Electroanal. Chem. Interfacial Electrochem. 177, 139 (1984)

    Article  CAS  Google Scholar 

  50. M.S. El-Deab, F. Kitamura, T. Ohsaka, J. Power Sources 229, 65 (2013)

    Article  CAS  Google Scholar 

  51. B.E. Conway, Prog. Surf. Sci. 49, 331 (1995)

    Article  CAS  Google Scholar 

  52. I.A. Pašti, N.M. Gavrilov, S.V. Mentus, Int. J. Electrochem. Sci 7, 11076 (2012)

    Google Scholar 

  53. S. Gottesfeld, Fuel cell catalysis: a surface science approach, vol. 99, 1st edn. (Wiley, Hoboken, 2009), pp. 1–720

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor A. Pašti.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Funding

This work was supported by the Serbian Ministry of Education, Science and Technological Development through the contract no. III45014. S.V.M. also acknowledges the support provided by the Serbian Academy of Sciences and Arts through the project “Electrocatalysis in the contemporary processes of energy conversion.”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pašti, I.A., Marković, A., Gavrilov, N. et al. Adsorption of Acetonitrile on Platinum and its Effects on Oxygen Reduction Reaction in Acidic Aqueous Solutions—Combined Theoretical and Experimental Study. Electrocatalysis 7, 235–248 (2016). https://doi.org/10.1007/s12678-016-0301-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-016-0301-6

Keywords

Navigation