Skip to main content
Log in

Hydrazine decomposition on a small platinum cluster: the role of N2H5 intermediate

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

This work presents a comprehensive DFT study on the interaction between hydrazine derivatives with a platinum catalyst surface, which is represented by a tetrahedral Pt4 cluster model. Three separate reaction pathways were investigated; two of which are related to possible pathways of NH3 formation. The first pathway describes the intramolecular transfer of one hydrogen atom in the hydrazine molecule forming the NHNH3 intermediate, then dissociating into NH and NH3. The second describes the addition of one external hydrogen atom to hydrazine forming N2H5, followed by its dissociation to NH2 and NH3. The third reaction pathway involves the formation of N2H3 by means of hydrogen abstraction by an external hydrogen. The reactions were studied in both the absence and the presence of a Pt4 cluster. We find that the assistance of the Pt4 cluster lacks a systematic effect on the reactions barrier heights. It is also shown that the ammonia formation can possibly proceed through the formation of the N2H5 intermediate, leading to more exothermic intermediate steps in the presence of the Pt4 cluster.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xia F, Cao Z (2006) J Phys Chem A 110:10078–10083

    Article  CAS  Google Scholar 

  2. Zhang W, Xiao L, Hirata Y, Pawluk T, Wang L (2004) Chem Phys Lett 383:67–71

    Article  CAS  Google Scholar 

  3. Ishikawa Y, Diaz-Morales RR, Perez A, Vilkas MJ, Cabrera CR (2005) Chem Phys Lett 411:404–410

    Article  CAS  Google Scholar 

  4. Perez A, Vilkas MJ, Cabrera CR, Ishikawa Y (2005) J Phys Chem B 109:23571–23578

    Article  CAS  Google Scholar 

  5. Goldberg A, Yarovsky I (2007) Phys Rev B 75:195403

    Article  Google Scholar 

  6. Bacalis NC, Metropoulos A, Gross A (2010) J Phys Chem A 114:11746–11750

    Article  CAS  Google Scholar 

  7. Mosch C, Koukounas C, Bacalis N, Metropoulos A, Gross A, Mavridis A (2008) J Phys Chem C 112:6924–6932

    Article  CAS  Google Scholar 

  8. Kulkarni BS, Krishnamurty S, Pal S (2011) J Phys Chem C 115:14615–14623

    Article  CAS  Google Scholar 

  9. Rubio J, Zurita S, Barthelat JC, Illas F (1994) Chem Phys Lett 217:283–287

    Article  CAS  Google Scholar 

  10. Xiao L, Wang L (2004) J Phys Chem A 108:8605–8614

    Article  CAS  Google Scholar 

  11. Vidal-Iglesias FJ, Solla-Gullón J, Montiel V, Feliu JM, Aldaz A (2007) J Power Sources 171:448–456

    Article  CAS  Google Scholar 

  12. Jacob T (2006) Fuel Cells 6:159–181

    Article  CAS  Google Scholar 

  13. Desai SK, Neurock M, Kourtakis K (2002) J Phys Chem B 106:2559–2568

    Article  CAS  Google Scholar 

  14. Franaszczuk K, Herrero E, Zelenay P, Wieckowski A, Wang J, Masel RI (1992) J Phys Chem 96:8509–8516

    Article  CAS  Google Scholar 

  15. Ehlers DH, Spitzer A, Luth H (1985) Surf Sci 160:57–69

    Article  CAS  Google Scholar 

  16. Brogan MS, Cairns JA, Dines TJ, Rochester CH (1997) Spectrochim Acta A 53:943–950

    Article  Google Scholar 

  17. Boggs BK, Botte GG (2010) Electrochim Acta 55:5287–5293

    Article  CAS  Google Scholar 

  18. Moran E, Cattaneo C, Mishima H, López de Mishima BA, Silvetti SP, Rodriguez JL, Pastor E (2008) J Solid State Electrochem 12:583–589

    Article  CAS  Google Scholar 

  19. Eberstein IJ, Glassman I (1960) 2:351 (cited on Ref. [20] below)

  20. Makled AE, Belal H (2009) 13th international conference on aerospace sciences & aviation technology, ASAT-13, Military Technical College, Kobry Elkobbah, Cairo, Egypt. http://www.mtc.edu.eg/ASAT13/pdf/PP22.pdf. Accessed 19 Jan 2016

  21. Schmidt EW (2001) Hydrazine and its derivatives: preparation, properties, applications, 2nd edn. Wiley, New York

    Google Scholar 

  22. Konnov AA, De Ruyck J (2001) Combust Flame 124:106–126

    Article  CAS  Google Scholar 

  23. Gray P, Lee JC, Spencer M (1963) Combust Flame 7:315–321

    Article  CAS  Google Scholar 

  24. Auzanneau M, Roux M (1990) Combust Sci Technol 73:505–520

    Article  CAS  Google Scholar 

  25. Sutton GP, Biblarz O (2010) Rocket propulsion elements, 8th edn. Wiley, New York

    Google Scholar 

  26. Ambrose J, Yendler B, Collicott SH (2000) J Spacecr Rockets 37:833–835

    Article  Google Scholar 

  27. Armstrong WE, Ryland LB, Voge HH (1978) Catalyst comprising Ir or Ir and Ru for hydrazine decomposition. United States Patent, US4124538A

  28. Soares Neto TG, Gobbo-Ferreira J, Cobo AJG, Cruz GM (2003) Braz J Chem Eng 20:273–282

    Article  Google Scholar 

  29. Alberas DJ, Kiss J, Liu ZM, White JM (1992) Surf Sci 278:51–61

    Article  CAS  Google Scholar 

  30. Wagner ML, Schmidt LD (1991) Surf Sci Lett 257:A565

    Article  Google Scholar 

  31. Prasad J, Gland JL (1991) Langmuir 7:722–726

    Article  CAS  Google Scholar 

  32. Maurel R, Menezo JC (1978) J Catal 51:293–295

    Article  CAS  Google Scholar 

  33. Johnson DW, Roberts MW (1980) J Electron Spectrosc Relat Phenom 19:185–195

    Article  CAS  Google Scholar 

  34. Grunze M (1979) Surf Sci 81:603–625

    Article  Google Scholar 

  35. Santos JBO, Valença GP, Rodrigues JAJ (2002) J Catal 210:1–6

    Article  CAS  Google Scholar 

  36. De Medeiros JE, Valença GP (1998) Braz J Chem Eng 15:126–131

    Article  Google Scholar 

  37. Asatryan R, Bozzelli JW, Da Silva G, Swinnen S, Nguyen MT (2010) J Phys Chem A 114:6235–6249

    Article  CAS  Google Scholar 

  38. Carrette L, Friedrich KA, Stimming U (2001) Fuel Cells 1:5–39

    Article  CAS  Google Scholar 

  39. Yamada K, Asazawa K, Yasuda K, Ioroi T, Tanaka H, Miyazaki Y, Kobayashi T (2003) Fuel Cell J Power Sources 115:236–242

    Article  CAS  Google Scholar 

  40. Yamada K, Yasuda K, Tanaka H, Miyazaki Y, Kobayashi T (2003) J Power Sources 122:132–137

    Article  CAS  Google Scholar 

  41. Serov A, Kwak C (2010) Appl Catal B Environ 98:1–9

    Article  CAS  Google Scholar 

  42. Esrafili MD, Mokhtar Teymurian V, Nurazar R (2015) Surf Sci 632:118–125

    Article  CAS  Google Scholar 

  43. He YB, Jia JF, Wu HS (2015) Appl Surf Sci 327:462–469

    Article  CAS  Google Scholar 

  44. Tafreshi SS, Roldan A, de Leeuw NH (2015) Surf Sci 637:140–148

    Article  Google Scholar 

  45. Schmidt MW, Gordon MS (2013) Z Phys Chem 227:1301–1336

    Article  CAS  Google Scholar 

  46. Zhang PX, Wang YG, Huang YQ, Zhang T, Wu GS, Li J (2011) Catal Today 165:80–88

    Article  CAS  Google Scholar 

  47. Agusta MK, Diño WA, David M, Nakanishi H, Kasai H (2011) Surf Sci 605:1347–1353

    Article  CAS  Google Scholar 

  48. Machado FBC, Roberto-Neto O (2002) Chem Phys Lett 352:120–126

    Article  CAS  Google Scholar 

  49. Daramola DA, Botte GG (2013) Colloid Interface Sci 402:204–214

    Article  CAS  Google Scholar 

  50. Zhang L, Van Duin ACT, Zybin SV, Goddard WA (2009) J Phys Chem B 113:10770–10778

    Article  CAS  Google Scholar 

  51. Becke AD (1993) J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  52. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  53. Perdew JP, Burke K, Ernzerhof M (1996) Phys Rev Lett 77:3865–3868

    Article  CAS  Google Scholar 

  54. Perdew JP, Burke K, Ernzerhof M (1997) Phys Rev Lett 78:1396

    Article  CAS  Google Scholar 

  55. Zhao Y, Truhlar DG (2011) Chem Phys Lett 502:1–13

    Article  CAS  Google Scholar 

  56. Zhao Y, Truhlar DG (2007) Theor Chem Acc 120:215–241

    Article  Google Scholar 

  57. Hay PJ, Wadt WR (1985) J Chem Phys 82:270–283

    Article  CAS  Google Scholar 

  58. Hay PJ, Wadt WR (1985) J Chem Phys 82:299–310

    Article  CAS  Google Scholar 

  59. McLean AD, Chandler GS (1980) J Chem Phys 72:5639–5648

    Article  CAS  Google Scholar 

  60. Krishnan R, Binkley JS, Seeger R, Pople JA (1980) J Chem Phys 72:650–654

    Article  CAS  Google Scholar 

  61. Herzberg G (1966) Molecular spectra and molecular structure: electronic spectra and electronic structure of polyatomic molecules, vol 3. D. Van Nostrand, New York

    Google Scholar 

  62. Kittel C, McEuen P, McEuen P (1976) Introduction to solid state physics. Wiley, New York

    Google Scholar 

  63. Psofogiannakis G, St-Amant A, Ternan M (2006) J Phys Chem B 110:24593–24605

    Article  CAS  Google Scholar 

  64. Fukui K (1981) Acc Chem Res 14:363–368. doi:10.1021/ar00072a001

    Article  CAS  Google Scholar 

  65. Hratchian HP, Schlegel HB (2004) J Chem Phys 120:9918–9924

    Article  CAS  Google Scholar 

  66. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr. JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam NJ, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian09 {R}evision {D}.01

  67. Ohwaki T, Kamegai K, Yamashita K (2001) Bull Chem Soc Jpn 74:1021–1029

    Article  CAS  Google Scholar 

  68. Parreira RLT, Caramori GF, Galembeck SE, Huguenin F (2008) J Phys Chem A 112:11731–11743

    Article  CAS  Google Scholar 

  69. Kua J, Goddard WA (1998) J Phys Chem B 102:9481–9491

    Article  CAS  Google Scholar 

  70. Gdowski GE, Fair JA, Madix RJ (1983) Surf Sci Lett 127:A177

    Article  Google Scholar 

  71. Li QS, Zhang X, Zhang SW (2003) J Phys Chem A 107:6055–6061

    Article  CAS  Google Scholar 

  72. Vaghjiani GL (1995) Int J Chem Kinet 27:777–790

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the continuous research and fellowship support of the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Grants 302,408/2014-2, 303259/2012-4, and 304914/2013-4, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Grants 2012/50666-2, 2011/07623-8, and 2014/24155-6. We also wish to thank Dr. Corey A. Petty for his kind attention in revising this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marina Pelegrini, Luiz F. A. Ferrão or Francisco B. C. Machado.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2493 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelegrini, M., Parreira, R.L.T., Ferrão, L.F.A. et al. Hydrazine decomposition on a small platinum cluster: the role of N2H5 intermediate. Theor Chem Acc 135, 58 (2016). https://doi.org/10.1007/s00214-016-1816-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-016-1816-x

Keywords

Navigation